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Abstract

A robust and efficient optimization code is developed and

validated. The code is used to redesign an existing Mach 12 wind

tunnel nozzle and utilizes response surface methodology (RSM)

techniques. Explicit, globally second-order, flux-difference-

splitting algorithms are used to solve the Navier-Stokes (NS) and

Parabolized Navier-Stokes (PNS) flow solvers incorporated into the

optimizer code. Either the Baldwin-Lomax or the Yang-Shih k-6

turbulence model may be employed in the optimization code.

First, 2-D/axisymmetric NS and PNS flow solvers are

developed/modified and account for perfect gas/nonequilibrium

chemically reacting flows. All solvers are validated against

Computational Fluid Dynamics (CFD) and experimental data.

The optimization code is subsequently developed and validated.

The optimization code is then used to optimize the Mach 12 nozzle

design and the computed results are compared with those of the

original nozzle. The code is tested for robustness and on three

separate occasions locates the global minimum synonymous with the

"global best" optimized nozzle. Though an optimized nozzle is

obtained, it is not as free of disturbances in the uniform inviscid

core at the exit as possibly desired.

xxviii



DEVELOPMENT AND TESTING OF A NEW OPTIMUM DESIGN

CODE FOR HYPERSONIC WIND TUNNEL NOZZLES,

INCLUDING BOUNDARY LAYER, TURBULENCE,

AND REAL GAS EFFECTS

1. Introduction

This chapter presents the problem addressed by the current

research, a short history of previously conducted research, the

purpose and objectives for the present study, and an overview of

the approach of this research to provide a foundation for the

following chapters of this dissertation. It begins with a

statement of the problem regarding previous and current design

methods of hypersonic wind tunnel nozzles, which have inherent

restrictions on accuracy or a high level of user interaction

requirements. The chapter continues with a presentation of

recently conducted research in the area of hypersonic nozzle design

and research on the testbed nozzle for this investigation; the

previously accomplished research aids in validating the developed

1



code. The chapter concludes with the purpose of this research and

concludes with an overview of the research approach.

1.1 Problem

Both previous and current hypersonic wind tunnel nozzle design

techniques have unique issues associated with them that result in

some level of limitation on their application. The method of

characteristics and boundary layer (MOC/BL) design technique was

used by the hypersonic nozzle designers of yesteryear. The issue

associated with this technique is its lack of accuracy in computing

the flow in a hypersonic nozzle. Current design techniques are

more accurate. However, in such methods, the optimization scheme

does not account for nonequilibrium and chemical reaction effects

and is somewhat restricted in its application. Such methods also

require a high level of interaction and knowledge on the part of

the design engineer.

In spite of the fact that hypersonic wind tunnels have been

used for the last 30 to 40 years and that incredible advances have

been made in CFD over the same time period, most hypersonic wind

tunnels were designed based upon the MOC/BL method developed by

Prandtl and Buseman in 1929 [1]. In this method, the inviscid core

is determined through the MOC and is augmented by attaching a

displacement thickness obtained from a BL solution. In a high Mach

number wind tunnel nozzle (M > 8), with increasing design Mach
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number this MOC/BL method suffers an increasing loss in accuracy as

is shown below [2]. Such a loss in accuracy may not be acceptable

for today's hypersonic aerospace vehicle designers or rocket nozzle

designers; wind tunnel nozzles designed based on the MOC/BL method

may be delivering test conditions different than those predicted by

the original nozzle solution. Such wind tunnel nozzles are not

delivering the predicted flow to the wind tunnel test section, and

therefore designers of hypersonic vehicles are using less-than-

desirable test section flow to obtain experimental results and to

aid in validating their CFD solutions with experimental results.

The hypersonics community has recognized this shortcoming

associated with existing nozzles, and is currently focusing much

CFD research and development on this problem.

Current hypersonic nozzle design procedures are much more

accurate due to recent advances in CFD, but still fall short on

several major fronts. First, the current optimization codes do not

account for full vibrational nonequilibrium, chemical reaction

effects which would likely be significant in a hypersonic nozzle.

Second, the application of such optimization codes requires a

smooth expansion corner in order to model the centerline Mach

number distribution which is used to drive the optimization scheme.

This requirement somewhat limits the applications to which the

optimization code may be applied. And third, successful

interaction at the necessary level with such codes demands that the

design engineer be quite knowledgeable of the optimization
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procedure; due to the complexity of the optimization scheme/code,

the required understanding of the optimization procedure is at

such a detailed level as to necessitate intensive training.

There is therefore a current need within the hypersonics

community for an accurate, hypersonic nozzle design procedure which

accounts for the possibility of chemical reaction effects, is broad

in its potential applications, and requires a minimum of computer

time and designer interaction.

1.2 History of Nozzle Research

This section presents two main topics: a history of research

in hypersonic nozzle design, and a history of research conducted on

the testbed for this investigation, that of the Wright Laboratory

(WL) 20" Mach 12 wind tunnel nozzle.

1.2.1 History of Hypersonic Nozzle Design. This section is

broken up into two parts which span the time in which numerical

methods have been used to design hypersonic nozzles. The first

part covers the classical MOC/BL method previously mentioned. The

second part covers more recent hypersonic nozzle design methods.

1.2.1.1 The MOC/BL Method. The MOC/BL method is an

iterative design process in which the inviscid core obtained by the

MOC and the boundary layer interact in a loosely coupled fashion
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through their respective boundary conditions (Fig. 1). Either a

wall boundary is specified, from which the displacement thickness

and inviscid core can be calculated, or the inviscid core and

displacement thickness are calculated, from which the location of

the wall boundary is determined. The iterations continue until

some form of tolerance has been reached with regard to the location

of the wall or some other parameter(s).

A detailed example of the MOC/BL process is given in detail in

[2]. In this particular approach, the flow inviscid core is first

generated using the MOC. The displacement thickness is then

generated using the BL method and is added to the inviscid core to

determine where the "hard" wall is located. Boundary layer

corrections are subsequently performed and the resultant

displacement thickness subtracted from the "hard" wall. At this

point, the resulting streamline at the edge of the displacement

thickness is compared to the inviscid streamline obtained through

the MOC (Fig. 1). The nozzle exit inviscid core diameter is then

resized, if necessary, to obtain a better match between the

inviscid core and displacement thickness edge streamlines. Note

that in this iterative method the exit diameter is constrained

while the nozzle length is not.

As previously mentioned, the MOC/BL method becomes inaccurate

for hypersonic nozzles with a design Mach number of 8 or more; this

inaccuracy is a result of one major assumption inherent to this

method [21: the region of flow between the boundary layer edge and
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the inviscid streamline is assumed to be inviscid and irrotational

(Fig. 2). However, in reality, the flow in this region is both

viscous and rotational, causing the "characteristic waves to curve

toward the wall as the Mach number decreases" [2] (Fig. 2). Thus,

the waves would likely not be reflected as they are assumed to with

the inviscid, irrotational assumption. This deviation is small for

low Mach numbers due to the incidence angle of the characteristic

waves, which results in less distance spent in the outer viscous

portion of the boundary layer (Fig. 3). However, for high Mach

numbers, the incidence angle decreases, causing the characteristic

wave to "remain in the viscous region for a much longer distance"

[2]. Thus, "the effects of rotational flow would be more

significant" [2]. Benton et al. conclude by recommending "that a

(hypersonic nozzle) design method using the Parabolized Navier-

Stokes Equations be developed" [2].

1.2.1.2 History of Recent Hypersonic Nozzle

Design/Optimization Research. Most of the current research in the

optimization area has come about through the work of Korte, at NASA

Langley. At the Naval Surface Warfare Center's Mach 14 Nozzle

facility, Korte et al. have studied hypersonic flow physics through

both computational and experimental efforts [9]. The research

focused on providing better understanding of the flow physics for

wind tunnel redesign purposes. The computational calculations
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utilized the CAN-DO code developed by Korte [9]. This computer

code was modified to account for vibrational equilibrium effects,

and used the Baldwin-Lomax (B-L) and Cebeci-Smith (C-S) turbulence

models. The vibrational equilibrium effects assumed thermally

perfect, calorically imperfect gas. The gas that was studied was

nitrogen (N2). The computational results agreed well with the

experimental data.

The Korte optimization method provided good results for the

test case in [9] as well as those in [60]. However, as previously

mentioned the method does have some inherent limitations. In

boosting computational efficiency, the code was designed to account

for at most vibrational equilibrium in the wind tunnel test gas.

The possibility to design a hypersonic nozzle and account for

vibrational nonequilibrium and chemical reaction effects is not

currently available.

Additionally, the CAN-DO code requires a macroscopically

smooth expansion corner in order to utilize a modification of

Sivells' method for modeling the centerline Mach number

distribution theoretically (Figs. 4 and 5) [9,36]. This

distribution is used in the optimization scheme to drive the design

nozzle's computed centerline Mach number distribution to match the

theoretical one [9]. As previously mentioned, the requirement of

a smooth expansion corner somewhat limits the applications to which

the optimization code may be applied.
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Finally, the CAN-DO code utilizes a complex optimization

scheme which requires the nozzle wall to be specified with cubic

splines sections. The nozzle design engineer must specify the

number of cubic spline knots (junctions or nodes between adjacent

cubic spline sections which define the nozzle wall) for the nozzle

contour. The design engineer must also specify the axial location

of the control points associated with the cubic spline knots on the

nozzle contour. Determining the number of knots on the cubic

spline and the location of the control points, is not a

straightforward or easy process" [9]. Additional knots must be

"added until a solution is obtained which satisfies the design

requirements" [9]. All of these combine into a requirement for

much interaction and knowledge on the part of the design engineer.

In further research associated with similar methods, Hackett

has computed CFD flow field solutions for the NASA Langley Research

Center's 15-Inch Mach 6 High Temperature Tunnel and 16-Inch Mach 17

Nitrogen Tunnel [26]. Full NS, PNS, and Method of Characteristics

techniques were used, and the solutions were compared with tunnel

calibration data. The research was performed to address the need

for high-quality wind tunnel data against which to validate CFD

codes. The comparisons between the CFD solutions and the

experimental data for the Mach 6 tunnel were shown to be in good

agreement (nozzle exit Pitot pressures up to ±3% different and

excellent agreement in the exit Mach number profiles were seen

between CFD solutions and the data). However, the comparisons for
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the Mach 17 tunnel were not (nozzle exit Pitot pressures showed

differences of up to 20% difference between CFD solutions and

experimental data). This was attributed largely to inaccuracies of

turbulence models for hypersonic flow (the B-L turbulence model was

based upon incompressible low speed flows). Degradation of

accuracies at higher Mach numbers was expounded upon, and the

possibility of the necessity of compressibility effects and

corrections was proposed. Also identified as a factor for the poor

agreement was the fact that nitrogen is not calorically nor

thermally perfect at such high temperatures and pressures.

Several research efforts have concentrated on the need to

include non-ideal gas effects in the full NS solution of high Mach

nozzle flow. For instance, in the work done by Johnson et al., it

was shown (using the MOC/BL method) that an increase in the

displacement thickness of 13% occurred when high temperature gas

effects were included as compared with perfect gas results [30].

In addition, the inviscid core exit radius increased 9% when high

temperature effects were included. It should be noted that the

stagnation conditions for this research were somewhat extreme

(stagnation pressure of 1.01325x10 8 N/m2 and stagnation temperature

of 23330K) [30]. However, the data appears to support the need to

investigate whether high temperature gas effects will have a

significant impact on a particular high Mach nozzle flow.

In a high Mach nozzle study performed by Candler and Perkins,

a number of interesting facts relating to non-ideal gas effects
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were presented [31]. First, for the hypersonic nozzles tested,

vibrational nonequilibrium provided its major effect upstream of

the throat; the vibrational temperature froze near the throat and,

downstream of the throat, the flow essentially acted as a perfect

gas with constant y=1. 4 . Second, vibrational nonequilibrium and

perfect gas solutions gave very similar results, while equilibrium

flow provided a substantially lower Mach number at the nozzle exit.

And, third, the zero-equation algebraic turbulence model used has

a significant effect upon the flow solution obtained (C-S, B-L, and

Renormalization Group (RNG) models were used); a 2% to 4%

difference was seen in the inviscid core exit Mach number when the

different turbulence models were used.

To summarize, the history of recent hypersonic nozzle design

and optimization points to a number of critical hypersonic nozzle

design community needs. One, an accurate, efficient, simpler

optimization code would be useful. Two, a given nozzle should be

testable as a minimum with a nonequilibrium CFD code to determine

if nonequilibrium effects need to be accounted for in the

optimization procedure. If nonequilibrium effects prove to be

significant, a nonequilibrium code should be an option such that it

can at the very least be used in the final iterations of the

optimization procedure. Three, the turbulence model used has a

significant effect on the nozzle solution and its selection,

therefore, must be addressed in a critical manner. These three
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required critical technologies formed the basis of the present

research.

1.2.2 The Wright Laboratory Mach 12 Nozzle - The Test Case.

Since data and personal expertise were locally available for the

Wright Laboratory (WL) 20" Mach 12 wind tunnel nozzle, this

facility was chosen to be the testbed for this investigation. The

Air Force WL hypersonic wind tunnel is an intermittent, blowdown-

to-vacuum facility with an axisymmetric 20 inch exit diameter

nozzle contoured to produce uniform Mach 12 or 14 flow in an open

jet test section (Fig. 6). For the Mach 12 nozzle, the tunnel

reservoir pressure ranges from 4.3169xi06 to 11.0316x106 N/m2 (600

to 1600 psia), the Reynolds number ranges from 1.3123 to 3.2808

million per meter (0.4 to 1.0 million per foot), the stagnation

temperatures range from 1000 to 1111 degrees Kelvin (1800 to 2000

degrees Rankine), and run times vary from 5 to 8 minutes [63].

A number of studies have been performed on the WL Mach 12

nozzle. Buck et al. performed experiments which showed the flow to

be isentropic, at least in the high Mach core [3]. Trollier et

al., of Science Applications International Corporation (SAIC) under

contract with the Air Force Wright Aeronautical Laboratories, used

CFD techniques based on the full NS and PNS equations to solve the

flow fields of the wind tunnel throat and supersonic nozzle

respectively. It was demonstrated computationally that the

11



experimental exit Pitot profile and the exit Mach profile were

bracketed by the fully laminar CFD profiles on the one side and

fully turbulent CFD profiles on the other (Fig. 7) [4]. It is this

author's opinion that this lack of agreement with the measured exit

data was likely due to uncertainty in the transition location,

inaccuracies in the turbulence modelling, or simplified modeling of

the physics of the flow (that is, not accounting for nonequilibrium

effects).

As to the use of this facility as the testbed in the present

research, it is the author's intention to use both experimental

data from and CFD solutions to the WL Mach 12 nozzle to validate

CFD solutions obtained herein. Additionally, experimental data

from the WL Mach 12 nozzle will be used to compare with the newly

designed Mach 12 nozzle obtained with the optimization procedure.

1.3 Purpose and Objectives of Present Research

The purpose of this research is to redesign an existing

hypersonic wind tunnel nozzle and in the process develop a new

design tool with the necessary inherent methodology. In the

process of redesigning the nozzle it will be desired that the new

design provide the largest uniform flow test section possible with

a minimum of computer time and designer interaction. To achieve

this end, state-of-the-art turbulence modelling and axisymmetric

capabilities, viscous effects, and compressibility effects must be
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accounted for in both NS and PNS codes. In addition, an

optimization scheme/code is required to perform nozzle design. The

computer program developed will be an improved tool for the

redesign of existing MOC/BL-designed wind tunnels due to the

complexity of the flow solvers and the simplicity of the

optimization scheme. The developed optimization code can later be

used for the design/redesign of more accurate hypersonic wind

tunnel nozzles or other high Mach propulsive devices.

Thus, there are three objectives to this research, one primary

and two minor but valuable secondary objectives:

- The primary objective is to develop and validate a computer code

to be used in the optimal redesign of the testbed nozzle. The

code, with state-of-the-art NS and PNS solvers incorporated, will

accurately and robustly select an optimal set of design parameters

based on some established design criteria, utilizing a simple

optimization scheme. Specifically, the code will be used to design

a hypersonic nozzle with the constraints of fixed length, throat

radius, and exit radius based on the main application, the test

case described in Sect. 1.2.2.

- A secondary objective is to determine if the B-L turbulence model

or the Yang-Shih (Y-S) k-e model would help provide a more accurate

solution to the flow field of the testbed nozzle.

- The other secondary objective is to test the newly optimized

nozzle for off-design conditions. Specifically, the new nozzle
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design will be tested with changes in back pressure and the results

analyzed.

1.4 Overview of Dissertation Approach

In order to achieve the objectives mentioned above a number of

critical steps needed to be taken. The first step taken was to

develop and validate a perfect gas NS axisymmetric laminar code.

The second step was to develop and validate a perfect gas and a

nonequilibrium, chemically reacting (NECR) NS axisymmetric

turbulent code. With the preceding steps completed, a comparison

could be made between nozzle flow solutions obtained with the two

turbulence models incorporated in the second step; thus a

turbulence model could be selected for the remainder of the

research, satisfying one of the secondary objectives. The third

step entailed developing and validating a perfect gas PNS

axisymmetric laminar/turbulent code. The fourth step was

development and validation of a simpler optimization scheme and

code, with subsequent redesign of the testbed nozzle, and tests for

robustness performed on the optimization code. Having completed

all of the preceding steps would satisfy the primary objective of

this research. The fifth and final step was to run the off-design

cases of the newly designed nozzle to determine the effects of a

difference in back pressure. This last step would satisfy the

other secondary objective.
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2. Governing Equations and Supporting Theory

The equations of fluid mechanics as pertain to the various

developed codes are presented in this chapter along with important

principles of optimization. First, the general form of the NS

axisymmetric equations is given in Cartesian and computational

coordinates, followed by the perfect gas and NECR forms. Next, the

perfect gas PNS axisymmetric equations are presented. Then the

turbulence model formulas are given. Finally, the pertinent

methodology used in the optimization scheme is presented.

2.1 NS Axisymmetric Equations, General Form, Cartesian Coordinates

As mentioned previously, the flow field of interest is that of

a hypersonic axisymmetric wind tunnel nozzle. Thus, the axi-

symmetric form of the NS equations are used. The equations in

vector form for axisymmetric coordinates are [48]:

Ut + FX + Gy (H-G) (1)

Y

in non-conservation form, and

Ut + F + 1(yG)y H (2)
Y Y

in strong conservation form, where

U= (p, pu, pv, E)T  (3)
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F-(pu, pu2 p-Txr, puV-Txy, u(E~p)-uTXX-vTXY+qx) (4)

G- (pV, PUV-Txyl POv2 +p- Ty Yv(E~p) -UTxy- VT yy+qy) T  (5)

H- (0, 0, P-Tee' 0 )T (6)

2
--x (p pt) (2ux-v Y-5 v ) (7)

T 2 (ppt(2vY- uX-5 V ) (9)
3 y

T e 2 (P+t) (-ux-v+2 v ) (10)
3 Y

qx =- "(k, kt) 2 (11)

qy - (k 2 k t ) TY (12)

(Note that Stokes' hypothesis has already been invoked; ie,

J\=-2/3P).

2.2 NS Axisymmetric Equations, General Form, Computational

Coordinates

The form of the equations given above is for that of a

Cartesian coordinate system. A generalized transformation from the

physical to the computational domain is made ((x,y)<=>( ,r)) in
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order to facilitate the CFD computations, where = (x,y) is the

streamwise computational coordinate, and n = r1(x,y) is the

crossflow computational coordinate. In the new coordinate system,

Eq. 2 now becomes [48]

H (13)
Ft~ +3 j

where

[T yU/J (14)

E7- y  ( ,,F Y G) (15)
J

G'-y (IlxF~ly G) (16)
J

and J, the coordinate transformation Jacobian, is defined as

j = Qxn - l- (17)

2.3 Extension of NS Axisymmetric Equations to Perfect Gas Form

The extension of the governing equations from general form to

the perfect gas form are now shown. First, the pressure, p, in a

thermally and calorically perfect gas is given by:

p = (y-1 ) pei (18)
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while the total energy is:

E = P(e. 14(u2.v2)) (19)

where ej = cvT (c, a constant) for a thermally and calorically

perfect gas.

The molecular viscosity is obtained with Keye's Law

pi a. T'1/ 2 1T(20)

where

a0 - 1.490xi0 "6 N.sec/m 2  (21)

al= 122.220 K (22)

and

a 2 50K. (23)

The molecular thermal conductivity can be obtained through the

use of the Prandtl number, with

-- (24)
kl-Pr

and the turbulent thermal conductivity is obtained through the use
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of Prt, through

k t = j(25)
Pr

t

once the eddy viscosity is known from the turbulence model.

For a perfect gas, the speed of sound, a, is defined as

a2 - yp/p = yRT (26)

which is the same as the frozen speed of sound, since in both cases

it is assumed that no chemical reactions are occurring. However,

in the perfect gas case, y is assumed constant; in the frozen case,

y may be a function of temperature.

2.4 NS Axisymmetric Equations, NECR Form

The governing equations presented to this point have dealt

with the perfect gas case, but to determine if it were necessary

to account for high temperature effects, it was necessary to use

and modify the computer code of Josyula [40]. This code accounts

for chemical reactions, as well as nonequilibrium vibrational

effects. The form of the governing equations is supplemented to

account for five individual species (02, N2, N, 0, NO) and three

additional energy equations which track the vibrational energy of

the three species of diatomic molecules (02, N2, NO), for a total

of eleven conserved variables at any given point.

19



To illustrate, the U vector from Eq. 2 becomes

u- (p poP02, pK, pop P'o, pu, pV, pN2e , Poe , Pvoe O, E)T (27)

where p, the total density, is now equal to the sum of the

individual species' densities (p p 02. . The F vector

from Eq. 2 is now

p0 u
P02

u

PNU
POu

PNOU

F -U p 2 1p_T x (28)
puv- I xy

PN2 e N2u q, N2

p 0 2 ev 02 U+q 02

PNOe VIOu+q x°
(E+p- T xx) u-yv . qq,

the G vector from Eq. 2 is

P 02V

PNV

Po v

PNOV

G pUV-Ty , (29)PV 2+p-T n,

Po2 e . V + qK 2

P~oe Ov V Xv 0
(Z-p-T Y) v-T YXu~qy y i.q,
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and the H vector from Eq. 2 becomes

w0 2

WNo

WNO

H 0 (30)
P-Tee

PN2 V ,N2+ e, 2 N2

o24 6 02
+ e, 0202

VNO vNo NO

0

where the total energy, E, from Eq. 19 has become

E peTrRo P (U2+V 2 ) pNeV.poeV oPNOe . (31)

The additional terms to the above vectors account for the chemical

reactions which are occurring and for energy being transferred from

the translational energy mode to vibrational energy as a result of

molecular collisions [50].

The chemical reaction source terms for the ith species, i, in

equation 29 derive from the law of mass action and consider the

five significant reactions which may occur between the different

species of the air mixture [40]. These possible reactions are

represented by
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N2 +M ' 2N+M
0 2 + M 20 +M

NO + M N 0 + M (32)
N2 + 0 NO+ N
NO + 0 02 + N

in which M is merely a collision body such as an atom or molecule.

The equilibrium vibrational energy for each constituent is

modelled using the simple harmonic oscillator model represented by

[33]

e R
VI (33)exp -i -13

where, for the ith species, T. is the vibrational temperature and

E 0 is the characteristic temperature of vibration and is defined

as [33]

hv. (34)E) = I-/ .
vi k

The individual factors in the last equation are Planck's constant

(h), Boltzmann's constant (k), and the frequency of oscillation of

the ith species (vi).

In order to correctly account for creation of vibrational

energy, the source terms have been added to the H vector. These

source terms are modelled using the Landau-Teller model for local

relaxation time and are defined as [33]
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-V Vl (35)
vl T

where e* (T) is the vibrational energy associated with temperature TVI

for the ith species, and T is the local relaxation time of the

ith species and is a function of temperature and pressure. The

local relaxation time for 02, N2 , and NO are obtained individually

with

IxI

T - Y1(X1  (36)

where x, is the mole fraction of the ith species and T is the

interspecies relaxation time between species i and species k and is

computed with the form developed by Millikan and White [33].

Vibration-vibration coupling is assumed negligible and not

accounted for. However, vibration-dissociation for the diatomic

species is computed with the two-temperature model used by Park

[51]:

Td = T0 .7 T0.3  (37)

in which Td is the dissociation temperature and T, is the vibration

temperature.
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The additions to the viscous portion of the F and G vectors

are the vibrational heat fluxes, which are given by [31,32]

aev

q, -k -- .1 (38)
"iaxi

Even though the perfect gas equation of state no longer holds,

the new equation of state is still given by [35]

p pRT, (39)

where

RZ&P - d, (40)

- ,(41)P P P

P,

p V- i (42)

C (43)

Note, however, that the specific heats correspond to the

equilibrium portion of the internal energy, i.e., the translational

and rotational energy.

Finally, the last equation needed is that for the speed of

sound. Conveniently, the form doesn't change from that of the

perfect gas. In other words, the equation remains [36]

24



a - [XP]1/2 [yRT]1 /
2 . (44)

p

As pointed out in [36], "this result is not approximate, but

(actually) corresponds to the frozen speed of sound for this ...

nonequilibrium flow."

2.5 PNS Equations, Perfect Gas Form

The PNS equations are a modification of the NS equations, but

they are restricted in use due to two requirements: "the inviscid

outer region of the flow (must) be supersonic and the streamwise

velocity component (must) be everywhere positive" [48]. However,

due to the transformation from NS to PNS, the PNS space-marching

technique allows for a solution to be obtained in the same time as

on the order of an Euler solution [48]. As shown below, space-

marching comes about as a result of dropping the time derivative

and some of the stress terms in Eq. 13 and integrating in the (or

streamwise) direction. This efficient integration scheme is what

makes the PNS equations so favorable in a well-behaved non-

streamwise separated flow [48].

Similar to the NS equations, but with the time dependency

removed and some modifications to the flux vectors, the primary

equation in transformed coordinates , similar to Eq. 13, is [49]

Y l, 1YG ,) +G 2 Y--f .
S-J) &. (45)
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The terms in the brackets on the left hand side of Eq. 45,

( F(1- 'G .are the Geometric Conservation Law (GCL)

terms which are necessary in this formulation due to the potential

variation of the grid as the solution marches downstream [9,49].

Note that the variable is only a function of x ( = (x)) and not

of y; this will aid in the transformation from the computed

variables (F*) to the conserved variables (U), as will be shown

below. Note also that the Q vector,

Q (0, CO, 0, 0)T (46)

which Korte recommends using has been dropped due to its de-

stabilizing effect on the PNS solver, as recommended by White et

al. [37].

In the flux vectors, F and G, the streamwise ( ) derivatives

are dropped, whereas in the F* vector, the stress terms are

dropped completely. Also, in F*, the pressure term has been

changed to account for upstream pressure in the boundary layer.

This change comes about by multiplying the pressure by Vigneron's

coefficient [49], producing

F* - (Pu, PUUC)p, puv, (E-p)u)T. (47)

In order to calculate Vigneron's coefficient, G, the following

equation
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2 (M)(48)

1. (y-l)Mt2  I

is first computed, where the streamwise Mach number is denoted by

M . Then, Vigneron's coefficient is simply

o) zrain (1, (0) (49)

where c is a safety factor used to ensure the eigenvalues of the

inviscid portion of the PNS equations have real values and that the

equations remain hyperbolic [49]. The value used for a in this

application was 0.75. This value seemed to provide good stability

with the scheme used. Due to the necessity of the safety factor,

it was necessary to ensure that the Mach number in the inviscid

core was above M which is defined as

> [1/(oy-yl)] 1 /2. (50)

With a having the value of 0.75 and assuming a y of 1.4, the value

for m.n was approximately 1.24.

2.6 The Baldwin-Lomax Turbulence Model Formulation

Of the two primary zero-equation models (B-L and C-S) [28,62],

the B-L model is preferred by this author for two reasons. First,

one need not locate the edge of the boundary layer in the B-L
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model. Second, the B-L has been validated against such flows as

boundary layer over a flat plate and transonic airfoils with

excellent comparative results.

Being a zero-equation model, the B-L turbulence model is based

upon several concepts and assumptions. First, the necessary length

and velocity scales are obtained from the mean flow; that is,

closure for the eddy viscosity is obtained from the mean velocity

field. Second, it is assumed that an equilibrium situation exists

between the mean flow and the turbulence present. Third, for the

inner region of the boundary layer it utilizes a form of Prandtl's

Mixing length formulation, which defines the eddy viscosity, Pt, as

P= 1- --I . (51)

Fourth, the form utilized for the outer region of the boundary

layer is modelled after the Clauser formulation [28].

This model calculates the eddy viscosity (pt) by calculating

a value for the area near the wall, giving (Pt)inner, and another

value for the flow beyond the inner region (1t)outer, much like the

classical model of the boundary layer. In the inner region, the

eddy viscosity is calculated as

(Pd~Inner-= pk2y2[lexp(_ )2C) (52)

A'

whdre
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au- a V (53)

y . (54)

V

u T (55)

with k and A constants depending on the flow (originally assigned

values of 0.0168 and 26, respectively) [28].

For the outer region, the eddy viscosity is defined as [28]

.ote - 0168p) (1 .6Fwake) Fklb (56)

where

Fwae- min ( yvaxFm , 0 . 2 5 YmaUd dz21/Fma (57)

and

F -max(F(y)) z max(ycol [1-exp(-Y-)]) (58)

where Ymax is that value of y (for a given x value held constant)

where F(y) = Fmx and

uiff = maxy=0,. ( V-) (59)
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Fk1 r = [1 5.5 (0.3 - Y)]
-1 (60)

The point where the transition from the inner region to the outer

region occurs is that point (in the y-direction for a given x-

coordinate) where Fmax occurs (Ynax)-

Generally speaking, the B-L model produces excellent results

in flows in which there is no adverse pressure gradient. However,

it is well known that it doesn't produce a reliable solution in

separation regions and recirculation regions. Hence, it is

necessary to be prudent when implementing an algorithm for this

turbulence model, particularly since as the back pressure is

increased the flow might develop an adverse pressure gradient and

separate.

2.7 The Yang-Shih k-e Turbulence Model Formulation

Originally developed by Jones and Launder [17] to compute

incompressible boundary-layer flows, the two-equation k-e model has

become a reliable, often-used turbulence model in the CFD

community. A comparison of numerous 2-equation models was made by

Lang and Shih [18]. The cases tested were low Reynolds number, 2-D

flows; one case was the flow over a flat plate and the other was

the flow through a fully developed channel. The Y-S k-e model

appeared to be one of the most accurate and robust turbulent

models, and it was one of the few models which approached the
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standard k-e model away from the wall. For these reasons this

model was chosen as the particular two-equation model to

incorporate into the computer program developed in this research.

In addition to the standard Y-S k-e model as proposed by Yang

and Shih [52], it is necessary to add Sarkar's compressibility

correction [19]. This necessity comes about since a good portion

of the flow in a hypersonic nozzle will be in the high Mach number

region, where compressibility effects are significant.

There are two additional equations which must be calculated

throughout the flow, for, this being a two-equation model, there

are two conserved variables needed to compute the eddy viscosity.

One of these equations governs the conservation of the turbulent

kinetic energy, k (specifically pk is conserved), and the other

governs the conservation of the turbulent energy dissipation rate,

e (again, specifically pe is conserved).

The turbulent kinetic energy conservation equation is defined

as

apk a ak a ak
at a[x~ 1I/k~ ay -- pk(4~ ay- (61)

[Pk-pe(I OLrM2 ).D] = 0

and the turbulent energy dissipation rate conservation equation is

defined as
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ap a~p p / ae] apv(p /a e.
at ax axt ay

(62)

Cfl--P.kC.A 2 e+Ee
TelT

where

aau av av
p k tx -+~Tt ()4 T 1 - (63)

tax xy aya ya

=-2[u(2a--) -pk] 64txx 3t ax ay (4

au av
xy a ax

yy3 ay ax (6

p.=pC~f~kTt (67)

Mt 2 = k(68)
yRT

e e (9

E, tPP+)( 2U)2 + +a v2] (70)
p~ OX2 ay2  OX2  y

f,=1. 0 (71)
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f2 z1-0.22expI - (72)
36)

f -1  1 exp(-0.004y -5e -5(y,) 2 2e-6 (y) 3-8e (y) 4 ) (73)

kc2 - pk 2  (74)
ye pe

C 0.09 (75)

Cl -1.44 (76)

Ce2 -1.92 (77)

k = 1.0 (78)

ca = 1.3 (79)

Pr t = 0.90 (80)

The compressibility correction already appears in Eq. 61 as the

term pecJXt 2, and represents the additional dissipation of turbulent

kinetic energy due to dilatation (compressibility), which only

appears to be needed for hypersonic flows [20].

Note that an additional term must be added to Eqs. 7 and 9 as

a result of the dependence of the eddy viscosity on the turbulent

kinetic energy, k. This is due to the fact that the Reynold's

shear stress, -<uiu >, is now defined as
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2 (81)-<U u > =- (U., u,) -3k5_j,

whereas before, the Reynold's stress had only been modeled by the

first term on the right hand side of Eq. 81. The Uj terms in Eq.

81 represent the mean velocity components of the flow, while the ui

terms represent the fluctuating velocity components. In

particular, -2/3pk must be added to each of Eqs. 7 and 9, producing

2 (p t) (2ux-v -6 v)_ 2
X3 y (82)

and

Tyy- 2 (v-pt) (2VyUX_ 5 v ) _ 2 p k .  (83)
3 y 3

For the perfect gas case, assuming that the NS solver were to

be used, Eq. 2 would look the same as originally presented but with

one additional source term on the right hand side, producing

Ut+F+ I .(yG) y - 5 H (84)
Y Y

where S is

S- (0, 0, 0, 0, pk-pe (1aMt2 ) -D, CifA p,-C pe-E.)cT- (85)

The dependent variable vector, U and the flux vectors, F and G, now

include the calculations for pk and pe. To illustrate, the

following changes are made: Eq. 3 becomes
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U- (p, pu, pv, E, pk, pe)T, (86)

with Eqs. 4 and 5 becoming

Pu
2PU 2p-Txx

puv- *T~

F= u(E~p)-uT.-vTxy+qx (87)

akpku- (p-pt/1gk) ak

peu- (p+pt/ae)
ax

and

pv

puv-T XY

2
pv +p-T

7Y

G V (E p)-UTxy- VTyyq (88)
ak

pev- (p.pt/a Oeay

Additionally, the total energy now accounts for internal and

kinetic energy, as well as turbulent kinetic energy, and is

represented by
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p(ei 1(u2 v2)+k). (89)

Inclusion of the turbulent kinetic energy into the total energy was

done per the work of Morrison [39] and has been shown to aid in

convergence of the solution.

2.8 Supporting Theory for the Optimization Scheme

A new wind tunnel design is obtained efficiently by

formulating an optimization problem. This must be done such that

the end result is a wind tunnel nozzle which has maximized the area

of the inviscid, high Mach core at the exit plane with minimal

crossflow and as few as possible disturbances in that core. In

other words, the solution to the optimization problem results in a

smooth expansion and uniform flow at the exit plane.

Three different optimization methods are presented. First,

the Korte nonlinear least-squares (LS) method is given. This is

followed by two techniques of response surface methodology (RSM),

those being the steepest descent method and the second-order

search.

2.8.1 The Korte Non-Linear Least-Squares (LS) Method. The

optimization scheme used by Korte [8,9] was based upon the research

of Huddleston [29]. The Korte solver optimizes aerodynamic design

through the use of a nonlinear least-squares optimization
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formulation. Basically, the nonlinear optimization problem

attempts to minimize an objective function through determination of

design parameters.

In this method, the objective function, (P), is dependent on

a set of design parameters, (a), and is constructed of a number of

functions, (pi), in the nonlinear least square form

P(a) - Pi 2(a). (90)

In vector form,

P(a) -pr(a)p(a) (91)

where

P - (P, P2.  .. . . .. .  P. ) T  (92)

and

a (al, a2 , ......... , a.) T. (93)

Thus, there are n design parameters and m total functions.

The components of p are as follows: for i = 1 to mi, the

weighted residual (or pi) is the error in axial Mach number at the

nozzle exit and is defined as

Pk = Co,(Mlmax'Mdesign )  k - j; j (94)

where c = 4 .0/Mdesign; from m1+1 to M2, the weighted residual is the
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error in flow angle, 0, at the nozzle exit and is defined as

Pk- =j)( 4 imax,j-0 ) k -mj 1 ; j 1 ,m 2 -ml (95)

where co = 2.5; and, finally, from m2+l to m, the weighted residual

is the error in the axial Mach number along the centerline and is

defined as

Pk = (Mx 1 Maxis) k = i Im2; 1 ,m-m2  (96)

where co = 1.0/M 1.. (The centerline Mach number, Maxils, distribution

is obtained using equations derived and readily available in [37].)

The design parameters, a, must now be defined. First, the

nozzle contour is specified using the following n cubic polynomial

equations:

-o+ 17 2+a 3 X; 0 X Xao+alx a2 x2 a 3x 3 :x x K 1

a4 aXFa 6 2 a7V 3  V x x-x 1 ; x1  x X2

r(x) : a.x(97)

R7-x ;F ;F=x
4n-4 a4n-3 a 4n-2 a4n-1 -_I; n-1 n

These n cubic equations produce 4n coefficients given that the xi

are known. The x. are the x-locations of the cubic spline knots

mentioned earlier. By requiring continuity of the surface and the

slope and the curvature at the endpoints of the segments, 3(n-l) of

the coefficients are specified. The remaining coefficients are

specified by the predetermined inlet and exit radii and slopes (4

coefficients) and by assigning wall slopes at the n-i interior
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points. The set of equations is now a linear system of equations

which can be solved to determine all of the coefficient values.

The design parameters are the wall slopes at each of the interior

points (a,, a., ag, ... , a 4,-3 ) . In other words, these are the

components which make up the a vector.

Using the Newton method for nonlinear least squares (assuming

this is a small residual problem), the equation which must be

solved is

Jk TAa k -a#kTpk, (98)

where k is the iteration number for the updated wall solution, and

J is the Jacobian matrix, defined as

eal eaPn-

- . .(99)

apm apm

0a1  aa 4n_3

Once Aak is found, the updated wall slope coefficients are obtained

using

ak 1 -a.k Aa k .  (100)

With the updated wall coefficients, a new wall shape is obtained

using Eq. 97. With the new wall shape, another CFD solution must
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be obtained. This procedure is repeated until the wall shape

converges; that is, the change between the kth iteration and the

k+lth iteration falls within some tolerance level.

As noted by Korte et al., the computer-time expensive portion

of this procedure is in obtaining the Jacobian matrix. Each

interior point must have its slope changed in order to generate the

columns of the J matrix. Each slope change is done independently

of the other interior points' slope changes, and for each slope

change made, another CFD flow field solution must be obtained in

order to generate a column of the J matrix. To illustrate, if

there are 100 interior points, 101 CFD solutions are needed for one

iteration (100 + 1 initial solution). So it would appear to pay to

minimize the design parameters in an effort to cut down on CFD

solutions needed.

2.8.2 Response Surface Methodologies (RSM) Techniques. RSM

techniques represent a somewhat different approach to the solving

of an optimization problem. Though minimization of an objective

(or response) function through variation of design parameters is

still performed, the method in which the path to the minimum is

taken is determined by fitting a "mathematical French curve" to a

smooth response surface [45]. "By careful design and analysis of

experiments, it seeks to relate a response, or output variable to
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the levels of a number of predictors, or input variables, that

affect it" [45].

"Response Surface Methodology (RSM) comprises a set of

statistical and mathematical techniques for empirical model

building and exploitation ..." [72]. It includes the development

of a group of experimental runs that will produce "adequate and

reliable measurements of the response(s) of interest in a region of

interest"; the analysis of the experimental results to determine an

empirical/mathematical model which provides a best fit to the

response surface data; and the determination of the values of the

design parameters which provide the desired response (possibly a

maximum or a minimum) [72]. Some explanations and definitions

follow.

In RSM, a response is defined as "the output of a system or

process that occurs as a result of (or in response to) a set of

inputs" [72]. The inputs, x. (i = l,k), are put through the system

or process and result in the output, z (Fig. 8). In mathematical

language, z=f(XX 2 ,...,Xk) =f(X), and even more specifically,

z-f(X, a), where 0 (61,2,..., 6P) represents the set of physical

parameters that help to define the relationship of the response

function. The latter, more specific form of z is referred to as

the "mechanistic model". Unfortunately, the true response

function, f, is generally not known and may be quite complex and
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therefore must be approximated. Additionally, e itself is

generally unknown and must be approximated as well.

The response surface is defined as "a geometric representation

of a response function" [72]. An example of a response surface is

presented in Fig. 9 for a case in which the response surface

parameter, yield, is plotted as a function of the two design

parameters of reaction temperature and reaction time [45]. The

associated contour plot is given in Fig. 10.

One tests the system with different sets of value of the

design parameters to use the generated responses to aid in

developing an "approximate interpolating function" to the response

surface [72]. This approximating function would be given by

z g(XI, X2X...,xk, 1, P21 .. - q)g(x,D) and is referred to as the

"empirical model." "The operation of the system with the k design

inputs adjusted to some definite set of levels (values) is referred

to as an experimental run" [72].

The techniques used in RSM include designed experiments, in

which sufficient and purposeful change is brought about in the

design parameters to allow observation and modelling of the changes

in the response(s); regression analysis, in which "statistical

techniques (are) used to model the response as a linear

combination" of the input/design variables, X, and their

interactions, 0; and steepest ascent/descent, in which a "gradient

search technique" is used to determine the location of either the

next point at which to begin the next search for the desired
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response, or the point at which a desired response is obtained

[72].

A graduating function is defined as "an empirical model that

approximates the mechanistic model over a specified region of

interest" [72]. A graduating function is used "to approximate the

true response function" [72]. This requires a means of fitting the

empirical functions to actual experimental data.

Assuming an adequate model has been postulated to represent

the data, one must then obtain the best estimates of the model

parameters (6) in the attempt to fit the empirical functions to the

data. In RSM, the method of least squares is used to obtain the

best estimate of e. It should be noted that z is restricted to

being linear in the parameters, meaning that

z=f(X,Q) = 1y1. 2y2 ... .vpY, where y1,y2,,...,y P "denote known constants

that are functions of the input variables x 1 , X2 , ... ,x1 k ... " [72].

Additionally, while z is restricted to being linear in the y, .,

parameters, it is not restricted to being linear in the x input

variables.

In the designed experiments phase, one performs a "set of n

experiments on the process, observing the response at each of n

sets of experimental conditions denoted by x, ...,x, obtaining

the vector of responses z=(z1 , z2, ,z)" [72]. In the subsequent

regression analysis phase, the error between the observed response

and that calculated by the mathematical model is represented by
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e-zi-f(X.,_) i-l,2,...,n. (101)

Assuming again that the response function is linear in the

parameters mentioned above, the mathematical model can be

represented by

z= - Oe (102)

where

Y11 Y12  Ylp

Y21 Y22  Y2p

(103)

Y.1 Y. 2  "'" Y.p

Least squares is used to find that value for e which "minimizes the

sum of squares function defined as the sum of the squared model

error and given by" [72]

S& ( =) (z-_) T(z-S_) . (104)

The desired value for E) is then obtained by setting as(_)/ap_-o

which produces

(r'Y) r'z (105)

which represents a set of p equations which are normal and which

can be solved for _ given that yrr is non-singular. Having solved
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for 0 it is now possible to use steepest ascent/descent methods (as

described below) to further the search for the desired response

from the system.

It is important at this juncture to take note of a point of

clarification for the remainder of this paper. Both the first-

order and second-order response surface methods described below are

steepest descent methods. However, the first-order method will be

referred to as the steepest descent method, and the second-order

method will be referred to as the second-order search method.

In the steepest descent method and the second-order search

method, though not absolutely , necessary, a coordinate

transformation may be performed in order to facilitate the search

procedure. As further illustration, assume for the moment that

only two generic design parameters are used and are represented by x,

and X2 . This transformation is made to take place by first

selecting a point, designated by (x1, x2 ) = (x2, x0) which is to

be the center of the search. Next, a delta to X and X2

designated by dx1 and dx2 , is chosen. Then the coordinates for the

new system are obtained from

1, 1 1 (106)dX 0

and
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X2 - 20
X2 =- ° (107)

dX2

These new variables are referred to as the coded input variables.

The centerpoint then becomes (x1, x2) <=> (0, 0). For the steepest

descent method, the additional points consist of the following

pairs of (X1,X2 ) (1,1), (1,-i), (-i,-i), and (-1,1) (Fig. 11).

For the second-order search method, in addition to the points used

in the steepest descent method, the additional points consist of

('2 , 0-2 , V2, , -2, (Fig.12 .

With the coded variables in use, Eq. 102 is now represented by

z =x e (108)

where the form of x is given in the following two sections. Once

again when minimizing the sum of the squares function, the

resulting equation,

(xrx)Ox r (109)

can be solved for a given that x'x is non-singular.

Though optimization methods used by other researchers have

concentrated on several design parameters, it was hoped that a

reasonably accurate engineering solution to the optimized

hypersonic nozzle could be obtained with the use of only two design

parameters. By using only two design parameters, it would
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hopefully be possible to use RSM in a straightforward manner to

obtain a minimum to the objective function, and hence, find an

optimized nozzle shape. The two design parameters chosen for this

research consisted of the attachment angle, eattachl and the exit

angle, 0exit (Fig. 13). It was felt that the necessary nozzle wall

shape to produce uniform nozzle exit flow at the design conditions

could be obtained with just these two parameters, given that the

nozzle length and the radius of the attachment circle, rci, were

prescribed by the designer (Fig. 13).

2.8.2.1 The Steepest Descent Method. The steepest descent

method is a first-order method which determines the direction of

largest change based on the sampling of the points mentioned above.

Once the response is determined for each of those points, a first-

order mathematical approximation to the local response surface is

obtained, then the direction of largest gradient is determined and

a search is begun in that direction to find a new minimum.

In order to characterize the local surface with a linear

equation, a first-order least squares bivariate regression equation

of the form

f(*X X2 ) ft = bo.b 1 Xlb 2X2  (110)

must be obtained. In order to do so, the coefficients b0, bl, and

b2 must be determined. Recall that f(Xl,x 2)ft is merely an artifice
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used to approximate the true local surface at any point,

represented by F. In order to best approximate the surface and

solve for b0 , bl, and b 2, the equation

X r :b X X'z(i)

must be solved for b, where

b (b0, bl, b 2 )T (112)

l x1 x2

i 12 x22

X - (113)

;1 X Xkr

z- (zl, z 2 , ... , z )T (114)

and N is the total number of points being sampled and zi is the

response value associated with point (X1,, x2) [45]. Note that b

is synonymous with 0 in Eq. 109 above. Another form of Eq. 111 is

given by

-Lb (115)

where

A . X'X (116)
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and

z = X'z. (117)

The matrix A,a 3x3 matrix represented by

al a 12 a13

A= a21 a22 a23  (118)

a 31 a32 a33)

has the following components:

al 11- N a 12 z-l -X li a 13- /i21 X-- -- \ )

a21 a12 a22 z ia23 A_ dj= l I

a3 1  a 13  a32  a23  a3 3  AId=l X2

For the steepest descent method described above N is 5. Inputting

the values for N and the prespecified values for (X1 , X2 ), the

matrix A simply becomes

500

4 =0 4 0) (120)

Once the matrix A is obtained, in order to solve for b it is

necessary to obtain A-' and also the vector Z (= [Z1, z2, Z3]T) which

is defined by
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In this particular case, since the x, and x2 don't change, the A-'

matrix remains constant and is represented by

0.2 0 01
A -' 0 0.25 0 (122)

0 0 0.25

At this point, it is possible to calculate the coefficients in Eq.

110 above, which are obtained from

b = A-Z. (123)

Once b has been computed, the direction of steepest descent

has been found because the gradient vector,

b - (bl, b 2 ) T  (124)

has been determined [45]. In searching for a new minimum if one

wishes to move a specific distance g in the steepest descent

direction, one need only specify g, from which the x, and 2 can be

calculated from the equations

g sign(b,)
b(125)

and

-X b2 x, (126)
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where

sign(bl) =-1 b(O (127)

The determination of X and x is obtained from the fact that the

magnitude of the coefficient vector at any point g along the

direction of steepest descent is defined by

g X2z (128)

and the ratio of x2x is the same as the ratio of b2 lb 1 since the

point lies along the direction of steepest descent [45]. Note that

sign(b,) (Eq. 125) is important since the sign of b, and b2 may be

lost in the ratio b2/bl. Also, note that if b, is negative, then

the direction of steepest descent requires that x be positive in

order to move in the correct direction. The same holds true for b2

and X2.

Now that the direction of steepest descent has been found, one

must sample points in that direction until an inflection point has

been detected. By sampling at least 3 points in the direction of

steepest descent, it should be possible to determine if there is

indeed a new minimum in this direction (Fig. 14). If there is a

new minimum in this direction and the sampling is fine enough, then

a good second-order curve fit to the response surface in the

direction of steepest descent should be obtainable in trying to

find the new minimum.
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For example, if three points were used (g1 , g2, and g3, where

g1 < g2 < g3) with corresponding response functions zi (Fig. 14)),

and, assuming a new minimum occurred at point g2, then it should be

possible to obtain a least-squares second-order fit of the z. along

the direction of steepest descent to the gi. In other words, an

equation of the form

fl (g) fit z bl o  bl1 g + b1 2g 2  (129)

should be obtainable, where the bi vector, (bl 0 , b1l, b1 2 )T, is

represented by

bl = AZ- 1 Zi1. (130)

The development of these equations can easily be seen by replacing

x, with g and x with g2 in Eq. 110. The components of the Al

matrix are then

al l N al2 a = l al3 - u (-- , g)23(1 1
a 21 -a 12 a 22 1 l3 a 23 - . -i=(1 3 1 1

a1 31 -a1 13  a1 32 -a1 23  a1 33 - (g1 ) 4

and the zi (= [z1 1 , Z12, Z1 3 ]T) vector is given by

=i z 2  qgz, zi3 ETg 1  (132)

where Ni is the number of points being used to attempt a fit; in

this case, N1 = 3.

Following the determination of the bl vector, since fl(g)fit is
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a quadratic equation, by taking the derivative of Eq. 129 with

respect to g and setting that derivative equal to 0 to find the

minimum, the following equation is obtained:

ew- -bill/(2 bi 2 ) (133)

which, when substituted into Eq. 129, produces the curve fit

minimum of fl(g)fit. In reality, whether or not a new minimum

exists at that value of g is very much dependent on how well Eq.

129 has characterized the response surface. The only way to

determine the quality of the response surface characterization is

to use that value of g to obtain new values of X1 and X2 , and to

obtain the new response function there, this to compare with the

other points along the direction of steepest descent.

Assuming a new minimum is found in the direction of steepest

descent, the associated point becomes the center of the next

stencil and presumably a smaller stencil in non-transformed space

is used in the next iteration of the steepest descent method (Fig.

15). The rationale for the next stencil to be smaller is to

provide a more localized surface to be used in providing the

requisite data for solving Eq. 110, and to thus provide a more

accurate representation of the local surface.

If, alternatively, no new minimum is found, then a number of

choices might be made. First, a second-order search can be

performed since 5 of the 9 sampling points needed have already had

their response functions determined (Fig. 12). Second, a smaller
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stencil can be used in non-transformed space (Fig. 16). Third, the

minimum of the 5 stencil points can be used as the new center,

assuming the minimum doesn't occur at the old center (Fig. 17).

And fourth, some combination of those three choices can be

attempted.

As long as the surface can be characterized to a good

approximation by a first-order fit, the method of steepest descent

works well. However, in areas where strong second-order effects

are evident it is likely that the first-order empirical model of

the surface will fail to find a minimum and the second-order search

method will need to be utilized [45].

2.8.2.2 The Second-Order Search Method. The second-order

method begins much like the steepest descent method in that a

number of points including a centerpoint need be sampled in order

to obtain some form of characterization of the response surface.

The 9 points mentioned above are sampled and each provides a

response value (Fig. 18). In order to approximate the surface with

a second-order polynomial, a second-order least squares bivariate

regression equation of the form

f2(x,X 2 ) - b 0 b1X1 b2 X2 + bl(X 1) 2 b 22 (X2 )2 b1 2X1X2 '  (134)

where the b vector ( = [bo, b1, b 2 , bn, b 22, b 12 ]T) is obtained from

A2b-Z. (135)
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2 s a (6x6) matrix, and both b and z are (1x6) vectors. The

development of A2 and z is very similar to that of A and z in Sec.

2.8.2.1, Eqs. 116 and 117 respectively. The difference between the

two methods starts in the x matrix, which is now given by

- - -2 -2 - -)

x = x11x6

1cXd1 X2 1 X11 X2 1 iix2e

- - -2 -2 - -

12 X22 g12 X2u 2 f 2r e

(136)

- - 2 -2--

1 X,, X2M X a X- X- a2,q

where N is the total number of points being sampled. For the

second-order search method, N is fixed at 9.

For a general distribution of points, A2 is represented by

X 52a2 -2 a2 .=" a2,E -, (137)2isE#lX, I

32a a22a2E JF 4 2 N-2
41 14 2 2a 4 a243=?, 26 244EIl 11 k-~1 1 2, a 246LEI1, X'1 I,

a2 3 a2 13 a2 32a2 23 a2 33a2 a2 34a22 a 3 -N*X2 a2 3 -27 1 7
a21a2, a2 42a2 24 a2 3=a22 a2= N a-1 X2 a 2 a

a 16 ~ 22 2 26 3=a 36 a24=a 46 a2,5a 56 a26=a 45

and the z vector is represented by
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Z - N X... (1 3 8 )
TI

Adj f: l z i

Due to a well-chosen distribution of the sampling points (Fig. 12),

the A2 matrix simply becomes

9008 80

080 0 0 0

008 0 0 0% - (139)
800 12 4 0

8 0 0 4 12 0

000 0 0 4

and it can readily be seen that straightforward solutions can be

determined for bl, ,b2 and b12. These solutions are given by

bi = -_, b 2  8 '3 b 12 -- -(.

For the remaining 3 equations, Gaussian elimination is used to

provide the following results:

b 11 z5_z 4 18(S4_8 )F (141)
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b 9.(142)

and

z1 -8b 11 -8b 22  (143)
9

Once b has been computed, the surface may be characterized at

the stationary point (the minimum) by examining the second-order

partial derivatives of Eq. 134. The stationary point, if one

exists, is the point at which a(f2)/ax - 0 for all x.. By taking

the second-partial derivatives of f2, the Hessian matrix, He,

represented by

e 2 
(144)

b2 22

is obtained. Then, taking its inverse, He -1 , and multiplying by the

V vector, represented by (-bl,-b 2)T, the new stationary point is

obtained as follows [45]

X, K -1 V. (145)

At this point in the calculations, a new theoretical minimum point
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has been established at (xl, x 2 ), and the only remaining step in

this iteration is to obtain the response value at that point. If

the stationary point provides a new minimum, then the search is

begun anew with the stationary point at the center of the sampling

space and presumably a smaller stencil in non-transformed

coordinates to try to zero in on the global minimum (Fig. 19).

Should the stationary point not provide a new minimum, then a

number of approaches exist. First, one might try a smaller stencil

in non-transformed space (Fig. 20). Second, one might choose the

response function minimum of the nine sampled points in the last

iteration, assuming it doesn't occur at the old center, as the new

center and begin a new search (Fig. 21). Third, one might revert

to a first-order search and use the steepest descent method to

perform the next phase of the search. And again, one might use

some combination of the three choices already presented.
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3. Computational Techniques

This chapter details the methods used to convert the governing

equations into discretized form for CFD solution. The discrete

form of the NS equations in perfect gas form is presented, followed

by a short discussion on the discrete form of the nonequilibritum

chemical reaction (NECR) NS equations. Subsequently, dis-

cretization of the perfect gas PNS equations, the Baldwin-Lomax (B-

L) turbulence model and the Yang-Shih (Y-S) k-e model are given.

The boundary conditions are presented at the end of each of the

sections mentioned.

3.1 Discretization of the Perfect Gas NS Equations and Boundary

Conditions

Temporarily ignoring the viscous and source terms, the

governing NS equation (Eq. 2) takes on the form in transformed

coordinates

A_ t ~. ~ t n -n

.IJ A ( /2, -F -1/2, - ( J -G1 ) (146)

where
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1 1.1/2,j1 /Il/, 2,~, [F )U )F (U 1 1 2 )]
J ) ,j I i1/2,J4, (147)

"(R IJA IR 1  )(UR ~U.L)1
A1.1/2.,j Ai1/2,j Aij 1/ 2 ,j) (i.-1/2,j /112,J

The last term on the right hand side of Eq. 147 is the dissipative

term which obviates the necessity of additional numerical damping

[43].

Once a solution is obtained to Eq. 146, it is necessary to

transform AuPn to Cartesian coordinates before performing the time

integration. The transformation takes the form

AUT'JJ(148)A Uin, j - Y,(18

y

The two-stage Runge-Kutta [42] time integration takes the form

Uf~ uf.n .AUpj (149)

for the predictor phase and

U (U +U (150)-ilj 2

for the corrector phase.

The factors in the last term of Eq. 147 represent A, the

linearized form of the computational flux Jacobian, and consist of

the following: the matrix RA, defined as
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1 1 1 0

u-k 2 c u uk 2 c -k 3

Rh- v-k3 c v v.k3c k 2  (151)

Ht-k 2 uc-k3vc u2+v) Ht~k2uc+k3vc k2v-k3u

where

k 2  (152)
( 2. k2) 1/2 k

k3 ky - k-y (153)k €2 k2) 1/ k

and

1

k- + 2 2 (154)

The total enthalpy, HT, is defined as

H = yp 1 (u 2 v 2 ) (155)
2'(y-1) p 2

The matrix R; is defined as
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(b1 +k2u/c-k3v/c) (-b2u-k 2 /c) (-b2v-k 3 /c) b 2

2 2 2 2

1-bi  b2u b2v (156)

(-b-k 2u/c-k3v/c) (-b 2u+k2 /c) (-b2v+k3 /c) b 2

2 2 2 2

k3 u-k2 -k 3  k2  0

where

(Y-1) (157)
C2

and

5 2 (u 2+v2 )
51 - 2 (158)

The matrix AA, whose only non-zero elements are on the main

diagonal and are the eigenvalues of A is defined as

u+.Y v-k c 0 0 0

o {1u v 0 0

A0 0 u k 0 (159)

0 0 kt 00 0 0 .u Yvl

(Note that c is the speed of sound in Eqs. 151, 156, 157, and 159).

At certain points where the flow goes sonic or enters a

stagnation region, the eigenvalues may be near zero. Due to

numerical roundoff, the result may be a violation of the entropy

condition: the scheme may produce the nonphysical solution of an

expansion shock, a decrease in entropy [7]. As a result, an

entropy cutoff is used to ensure that the eigenvalues never
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decrease below a certain level, defined as 5.. The eigenvalues are

resultantly defined as

=2 k J x5(160)

where 5x takes one of two forms. The first form is used in the

body-normal direction and is represented by

where 5 is a constant value. For this application, after

discussions with Gaitonde, the value was made to be 0.01 to

minimize the additional dissipation associated with this cutoff

[57]. The second form, the anisotropic form of 5., is used in the

streamwise direction to prevent excess dissipation due to large

grid cell aspect ratios and is given by [7]

61\ ZJ- 1 X( 1 ( xrj, (162)

where XWk) - U .Vki cVkI. Note that only the two eigenvalues

associated with the speed of sound were cut off in each direction.

The eigenvalue of the contravariant velocity was not altered, per

[57]. Similar formulations are used to calculate G' 1 , where ir

replaces in the eigenvector (and its inverse) and eigenvalue

matrices.
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Global second-order spatial accuracy is achieved through the

MUSCL (Monotonic Upstream Schemes for Conservation Laws)

formulation in combination with the minmod slope limiter [7]. The

minmod limiter reverts the solution to first order at extrema (such

as shocks) contained within the flow, thus preventing spurious

oscillations. As illustrated in Fig. 22, the unconserved

variables are extrapolated from the cell center to the cell

interface with the MUSCL formulation of van Leer [12] in

conjunction with the minmod limiter [13], in order to obtain the

conserved variables immediately to the left and right of the cell

interface. These are then used to calculate the flux vectors

immediately to the left and right of an interface (giving the first

four terms on the right hand side of Eq. 147). Subsequently, Roe-

averaging is used to compute the last term in Eq. 147. Due to

limitation of space, some details have been omitted; for an

excellent description of the Roe-scheme as pertains to perfect gas

flows, the reader is referred to the work of Morrison [39].

As for the remainder of the terms in Eq. 13, the viscous terms

are handled in a central-differencing manner and the source terms

are always lagged by the values from the previous half time-step.

3.1.1 Inlet Boundary Conditions. The inlet boundary

conditions were taken directly from the work of Korte et al. [9],
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as it was felt this was an excellent source for nozzle subsonic

inlet conditions. The first two columns of cells at the inflow

(Fig. 23) must be computed using these conditions in order to

maintain a second-order boundary condition. The assumptions made

are that the streamwise mass flow rate is conserved and the normal

mass flow rate remains constant. The other two inlet conditions

are made by specifying the reservoir stagnation enthalpy and

pressure (hT and PT) and accounting for compressibility in PT. For

the testbed nozzle, hT and PT were specified as 502,000 J/kg and

12,410,563 N/m2, as recommended to the author in [63]. The mass

flow rate conditions are represented by

Area 1 ' J (163)
(pu~ij- (u) i1,j Area,, j

and

(Pv)i, j  (Pv).Ii Yl 1j-- (164)
.Yi,i

while the second two conditions are given by

¥ P j i [ (p u ) 2 ,. (pV ) 2

T - P-, 1 1 '] (165)y-l 1 j 2 2
pi,j

and
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pT _ 1 (pu) 2  (Pv) 2  
(1P l, I T = [, i j i~ ,(166)

2 2P-i j

where

+P 2 4(u 2 v2  ,), (167)

and

P - (1+ (y-1) M2)_¥/(¥-1) (168)

PT 2

The second two conditions, Eqs. 165 and 166 combine to produce

(pu) 2,j_ (pr) 2,
hp 2 ,j - T p -0 . (169)Ti y-1 , 2 (y-1)

In solving the inlet boundary conditions, Eq. 169 , a quadratic,

must be solved for P,,j using Eqs. 163, 164, 165, and 167. Eqs. 167

and 168 account for compressibility and are generated using the

last computed values (i.e., from the previous half time-step) of p,

u, v, and M. Once the density is calculated using the quadratic

above, then the pressure can be calculated from Eq. 166. Following

that, the variables, u, v, ej, and E are easily obtained with

U'J- (PU),j (170)
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vij- (PV) 1, (171)
Pilj

e cT; T = Pi_ j (172)

and,

ij P,[e - (,,,v j 2 +V . (173)
Eil = il iil 2 (uli+]~ Il

At the end of each half time-step after the computation of the

interior of the flow is complete, the inflow boundary conditions

are enforced, beginning with the second column of cells (i=2) (Fig.

23). After that column is completely computed, the first column of

cells (i=l) is computed.

3.1.2 Nozzle Wall Boundary Conditions. The boundary

conditions for the wall (Fig. 24) are as follows: no-slip, a zero

first-order pressure gradient in the body-normal direction, q, and

a specified wall temperature which had the following distribution:
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(0K) = 500 x 0.2032mTwal ( 509.51-46.81x x>0.2032m (174)

This wall temperature distribution was provided to the author [63].

With those three boundary conditions and the perfect gas

assumption all of the variables at the wall are easily calculated.

The velocity components for the ghost cells (the grid cells in the

nozzle wall, used to enforce boundary conditions, j = jl) (Fig. 24)

are obtained from the no-slip condition and are given by

Ul'jl = -UiJl-; ViJl - -iJl--' (175)

while the zero first-order pressure gradient results in

Pi'jl Pi'jl-l" (176)

With the temperature at the wall specified by Twa,  a simple average

produces the internal energy of the ghost cell as

ei - w -eil,-1  • (177)

With those four variables computed, the density is easily

calculated from
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Pi'Ji - P ,jl-l (178)

and the total energy is obtained using Eq. 173.

The inviscid flux condition at the wall is due to pressure

only. The rationale behind this can be clearly seen in Eqs. 4 and

5. In the inviscid portion of these two equations, no-slip drives

the velocity components at the wall to be zero, eliminating all

contributions except the pressure.

3.1.3 Centerline Boundary Conditions. Reflection is used as

the boundary condition at the centerline (Fig. 25). This means

that all of the flow variables for the ghost cells (those on the

other side of the centerline, j=1) are exactly equal from one side

of the centerline to the other except for the v velocity component.

The v component takes on the negative value of that of its mirrored

cell. Only one row of cells is used on the other side of the

centerline. The flux condition at the centerline is assumed to be

zero since the formulation is finite volume and presumably no flux

can occur through the centerline.

3.1.4 Nozzle Exit Boundary Conditions. The boundary

conditions at the exit (Fig. 26) are to assume a second-order zero

gradient in the direction for the conserved variables, as
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recommended to the author by Korte in one of many discussions [531.

This assumption results in

Ulj -2 U.l-,-u 1 2 ,j " (179)

3.2 Discretization of the NECR NS Equations and Boundary Conditions

Similar to the perfect gas case, formulations for the

nonequilibrium gas case for the Roe-averaged variables and the

flux-difference splitting have been developed and are available.

For excellent examples, the reader is referred to [35, 36].

3.2.1 Boundary Conditions. The boundary conditions for the

inflow are handled exactly as they are for the perfect gas case in

Section 3.1.1, but with the assumption that the air, though at high

temperature and pressure, is at equilibrium and of a fixed

composition. Thus, the vibrational temperature is assumed to be

equal to the temperature of the air, and the mass fractions of N2,

02, N, 0, and NO are assumed to be constant at 0.767, 0.233, l.E-

06, 1.E-06, and 1.E-06 respectively. All other boundary conditions

are done exactly as in the perfect gas case in Sections 3.1.2-

3.1.4.
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3.3 The Discrete Form of the PNS Equations in Perfect Gas Form

The goal was to produce a PNS solver which would match very

well with the NS solver and which would have incorporated within it

the same turbulence models as the NS solver. The reason that it

was important that the two solvers match well was that the NS

solver was to provide the input to the PNS solver (Fig. 27). Thus,

the same methodology was used to minimize the differences when

transferring from NS solver to PNS solver. In other words, the two

codes would have in common the same grid generation technique, the

same flux-difference-split calculations in the i-direction, and the

same turbulence model formulations. The PNS solver is overall

second-order accurate and uses the same two-stage Runge-Kutta

integration scheme as the NS solver [42].

Ignoring the viscous, source, and GCL terms, the parts of the

main governing equation dealing with convection and pressure, Eq.

45, becomes

__Ye _ ( ) (180)J7 LJ r Gi'J 1/2 17i'J-1/2

where G "  retains the same definition as in the NS formulation,
Ii,J±1/2

similar to Eq. 147. The viscous terms are again centrally-

differenced. The source terms are once again lagged from the

previous plane (Fig. 28). It is most important to retain the

differencing of the metrics in the GCL terms in the same form in
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which the flux differencing is computed, otherwise instability to

the solution may arise [9].

Once the F* flux terms have been calculated, the conserved

variables must be decoded from the F* terms [49]. With

F': [pu, puu. p, puv, (E p) u]l  [F;, F;, F;, F;]T (181)

the conserved variables are calculated from

V -- ; U =-b; p b-; p - , (182)
2a u U

where

a= -- b- ; a2 -___ - ( 2 1832 F[2y - cz(y -1)] [2y - o(y - 1)][j

Without the stipulation that = (x) only, the decoding would be

much more complicated.

The value for Vigneron's coefficient, G) (Eq. 49), must be

known before a solution can be found. In this application, ( is

lagged by defining it as a function of the previous space marching

step solution. Once calculated, the value remains unchanged

through both the predictor and corrector phases of the solution.

Any attempt to change w in the current space marching step lead to

instability and could not be remedied. It is strongly suspected

that this is due to the inability of the flux-differencing to
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account for this change since the eigenvalues are calculated based

on the conserved variables and not on the F' components, per Korte

[49]. In other words, since the subroutine which performed the

flux-difference splitting used the computational flux Jacobian,

B = adaU, and not the formulation used by Korte, B = aG/aF*, there

was no accounting for a change of w within the numerical

dissipation portion of Eq. 180.

As to the space marching step itself, given that the inviscid

upwind algorithm has a Courant-Friedrichs-Lewy (CFL) [48] linear

stability limit of 1 and a viscous limit of 1/2 (valid for 2-D or

axisymmetric), then the allowable space step is defined by [49]

AYwa. 2p (184)
ME Vy _(- C) P u "y..11

where Lywa is the change in y from the wall to the first grid point

off of the wall (Fig. 29) [49]. All of the other variables in the

above equation were taken at the first cell-center point away from

the wall. This step is applied with a safety factor of 0.9 since

the geometry in this application is a simple one [49].

With an adaptive grid subroutine provided to the author by

Korte [53], the Aywall (Fig. 29) is computed dependent on whether the

flow is laminar or turbulent. Within the subroutine, the value for

y at the jth point is given by
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yj 4 (y-yL) (l-pI (1- 2 ) (l- 2
;i 'r, 1 1+ +1)185)

where

_;1 (Jw-J) Uj-l)
.7 (J9) w- Jwl ; - 1. 02, (186)

The stretching parameter %w is allowed to vary in order to meet the

AYwaij, specification.

Should the flow be laminar, the number of points inside the

boundary layer is specified by user input which in turn aids in

computing the Lywai. This value is currently set to 20 points

inside of the laminar boundary layer. Essentially, how this works

is the subroutine in this case takes 1/20th of the Mach number at

the centerline of the nozzle and drives 0, such that the first

point away from the wall matches that value of Mach number (Fig.

30). Though this uses a somewhat simple linear approximation to

the Mach number distribution in the boundary layer, it appears to

provide excellent results in obtaining the specified number of

points within the boundary layer [53].

Alternately, should the flow be turbulent, the value of

the y' value (Eq. 54) of the first point off of the wall (Fig. 31),

is a user input; the specified value of yn in turn aids in

computing AYwajj for the first point off of the wall. In this case,
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the subroutine drives P. such that the first point away from the

wall matches the user-specified value of yn. The required value

of y.n varies depending on how accurate a solution is deemed

necessary by the user.

3.3.1 Boundary Conditions. The boundary conditions for the

PNS solver were developed or taken from previously mentioned

boundary conditions. The NS solver produces two adjacent columns

of cells which are the initial conditions for the PNS code (Fig.

27) . The most critical point here is for the NS solver to give an

initial starting plane which does not violate Mmin, as will be

further discussed [9] . This is done by specifying for the NS

solver the value of the safety factor, c (Eq. 49), letting the

solver backmarch from the exit through the flow field solution in

search of the plane at which the violation occurs, and taking the

next column downstream as the initial plane for the PNS solver.

The wall and centerline conditions are handled exactly as they are

in Sections 3.1.2 and 3.1.3.

No outflow conditions are required for a PNS solver in

supersonic flow. The last solution plane at the nozzle exit

provides the exit boundary conditions. In essence, this is a

zeroth-order extrapolation or boundary condition.
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3.4 Discretization of the B-L Turbulence Model and Boundary

Conditions

In solving for the eddy viscosity with the B-L turbulence

model, it is first necessary to find the maximum vorticity, Cmax o

This almost always occurs at the wall, but to ensure it is located,

a search marching away from the wall for a given axial location is

undertaken. With omax known, the value for F(y), Eq. 58, at each

point can be calculated. Once that is done, the point at which

F(y) has a maximum value determines Fmax and Ymax for that column of

cells (Fig. 32) . Next, pt i and lit.t are calculated marching

away from the wall. Until the point at which is greater than

Sto.t , the eddy viscosity is equal to t, otherwise it is equal
to p0 1  (Fig. 33).

In general, the number of times the B-L turbulence model is

updated in the time-integration scheme has an influence on the

numerical solution.. However, the final converged numerical

solution at steady state is independent of the number of times the

B-L model is updated within the solver. The B-L turbulence model

is therefore called once every 5 total time integrations (that is,

once every 5 predictor-corrector cycles) in the NS codes, per

recommendation by Shang [64]. This is done to aid in preventing

the NS solver from reacting too quickly to immediate changes in the

eddy viscosity. In the PNS code, the B-L turbulence model is

called after each spatial integration step (either predictor or
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corrector), since there is no temporal dependence in the PNS

solution, and the geometry and physics change the values of omax,

Fmax, and Ymax at each spatial location.

3.4.1 Boundary Conditions. There are only two boundary

conditions which need to be accounted for with the B-L model. At

the wall, eddy viscosity equals 0, so the equation for the eddy

viscosity for the wall ghost cell is handled the same as the

velocity components in Section 3.1.2. The eddy viscosity for the

centerline ghost cell is equal to that of its mirrored cell, just

as in Section 3.1.3, where the values of the scalar parameters

remain unchanged across the centerline (Fig. 34).

3.5 Discretization and Boundary Conditions of the Yang-Shih k-e

Model

The discretization of a k-e model using Roe's flux-difference

splitting is readily available in [39]. The discretization

recommended by Morrison is exactly the one used. A couple of key

points must be mentioned however.

First, in order to prevent negative values of k and e, minimum

values must be established beyond which pk and pe are not allowed

to transgress. However, care must be taken in assigning these

values since the eddy viscosity is proportional to the ratio of

k2/e. The values of pk~,,n and Pemin therefore should have some basis
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in reality or at least a reasonable value compared to the ratio.

In this formulation, the values for Pkmin and PEmin are chosen to be

1.OE-24 times the values of pk and pe at the centerline in the

inflow of the nozzle, per recommendations by White of NASA Langley

[651.

Secondly, since k is included in the total energy equation,

care must be taken to account for this inclusion in the Roe scheme

formulation [39]. Of specific importance is the fact that the

enthalpy and the speed of sound change as a result of this

inclusion. The total enthalpy, HT (Eq. 155), is now defined as

H Yp 1(u2 v2) k, (188)
S(y-1) p 2

which using Eq. 26 makes the speed of sound, c,

i
C [(y-1) (HT- (u 2 v 2 ) -k) ] 2 (189)

Both of these equations are used in the formulation of the Roe

scheme in Eqs. 146 and 147.

The method of solution for the governing partial differential

equation with the added k-e equations, Eq. 84, is to first solve

for the NS equations throughout the domain of interest and to

update the NS CFD solution. In other words, the new values for the

(p, pu, pv, E) of Eq. 84 are computed as well as the values for (u,

v, p, ei). The boundary conditions on the mean flow are
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subsequently enforced. During the preceding processes, the last

computed (that is, the last half step) values of k and pt are used.

Then using the previous half step values for the pertinent flow

variables, the portion of Eq. 84 represented by Eqs. 61 and 62 are

solved throughout the flow field in order to obtain the most

current values of k, e, and pt . After enforcement of the k-e

boundary conditions, this half step (either predictor or corrector)

is concluded and the next half step starts.

3.5.1 Boundazy Conditions. The inflow boundary conditions are

not quite as straightforward as they have been for other portions

of the code. For the inflow, the eddy viscosity was assumed to be

equal to the molecular viscosity at each point of the inflow.

Assuming a turbulence intensity of T = 0.01 [41,59] where the

turbulence intensity is defined as

k)
_ 3 j (190)

the value for ki,j can be readily computed. Then, using the value

for eddy viscosity and k at each point along the inflow, e can be

calculated using Eq. 67 [411. In the Y-S formulation, since e

can't be solved for explicitly in the eddy viscosity calculation

(Eq. 67), it is necessary to perform a Newton iteration to obtain
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The boundary conditions at the wall are as follows: k is zero

at the wall and ewa11 [52], represented by

ewall - 2v( k 2 ( (191)

with the simple average given by

ewai - 0.5 (e1, le 1 ,jl_1 ) (192)

results in

eiji=4v(ak 21 e-8 (193)
ay }wall

The reflection boundary condition was again used at the centerline

as in Section 3.1.3, and a zero second-order streamwise gradient

was used at the outflow to obtain pk and pe there, as in Section

3.1.4.
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4. Nozzle Flow Code Development/Validation

This chapter details all of the steps involved in taking a 2-D

Roe-scheme NS code to full axisymmetric, modifying the code by

adding the two turbulence models, and changing the resultant code

over to PNS for use in the supersonic section of the nozzle, along

with the validation steps taken along the way. Results of the

validations are presented immediately following the presentation of

validation case details. Justification as to why procedures were

followed or not followed is provided, as are any pitfalls

encountered along the way.

Salient features of all of the NS and PNS codes are as

follows: finite volume, capable of being run 2-D or axisymmetric,

using explicit integration, and globally second-order accurate

through the use of flux-difference-splitting and the minmod

limiter. In addition, the NS codes can utilize local time stepping

for a steady-state problem in order to accelerate convergence to a

solution. The nozzle flow codes are highly vectorized, resulting

in their running much faster on a Cray or similar computer.

However, the solvers can be run on any UNIX machines, including Sun

Microsystems. In the harshest case (nonequilibrium chemically

reacting (NECR) flow, NS solver, for almost the entire length of
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a ten foot nozzle), the nozzle flow codes require less than 8 Mw of

computer memory on a Cray, or 263 words per grid point.

4.1 2-D NS Perfect Gas Code Modified to 2-D/Full Axisymmetric

In order to have a 2-D/axisymmetric perfect gas code with the

appropriate turbulence models and changeable source code, it was

determined that the most efficient process would be to modify an

existing local 2-D code which utilized the Roe-scheme. Though a 2-

D/full axisymmetric NS code was available locally, this code was

designed to account for vibrational nonequilibrium and chemical

reaction effects; in the laminar case, for instance, this code

solved for eleven conserved variables at each grid point (Eqs. 2

and 27) vs. four conserved variables at each point for a strictly

perfect gas NS solver (Eqs. 2 and 3). It was therefore felt that

this code would spend much wasted computer time in needless

computations when solving the perfect gas NS equations. However,

since the nonequilibrium chemical reaction code and the original NS

perfect gas 2-D code were developed by the same person, Gaitonde

[61, 66], and the foundation for the nonequilibrium code was the NS

perfect gas 2-D code, it was felt that the 2-D code could be

efficiently and quickly converted to being alternatively axi-

symmetric.

The NS perfect gas 2-D code was a proven finite volume code

which incorporated the Roe-scheme [7]. The finite volume method
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ensures that the basic quantities of mass, momentum and energy are

conserved at the discrete level [42]. Roe's scheme was determined

to be desirable for a number of reasons [7]. First, since

upwinding is used, no additional numerical dissipation is needed.

Second, many other schemes are highly dissipative in viscous flows,

giving large errors in heat transfer and other undesirable effects.

Third, the method is extremely stable and robust, both highly

desirable qualities. Fourth, the scheme does an excellent job of

capturing shocks.

The form of Roe's flux-difference split method used in the

computer code is MUSCL (Monotonic Upstream Schemes for Conservation

Laws). Essentially, in standard flux-differencing (non-MUSCL), the

flux vectors (F and G in Eq. 2) at the cell centers are

extrapolated to the cell interfaces. In the MUSCL approach, the

conserved, dependent vector (U in Eq. 2) or the unconserved,

dependent vector (p, u, v, p) at the cell center is extrapolated

to the cell interface in order to obtain the flux vectors at the

interface [11].

The perfect gas computer code as given to the author was 2-D

and hard-wired to compute the laminar flow about an airfoil. The

code had to be converted to solve either axisymmetric flows or 2-D

flows, as mentioned previously, and be modified to compute nozzle

flow. Per the recommendation of Gaitonde [57] and following the

example set forth in [66], Eq. 2 was selected as the governing

equation.
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Thus, the change in the 2-D code to axisymmetric entailed

changing the metrics to account for variation with the normal

variable, y (y~x/J, y y/J, yrx/J, yry/J for the axisymmetric case

vs. x/J, y/J, rx/J, ry/J for the 2-D case); adding axisymmetric

terms to the viscous terms to account for non-Cartesian coordinates

being used (the terms with a factor of 5 in Eqs. 7 and 9); and

adding the source terms to the right-hand side of Eq. 2. In

addition, since the code lacked the anisotropic entropy cutoff in

the streamwise direction (Eq. 162), this formulation was added to

the code; recall this cutoff alleviates large amounts of

dissipation which arise with large grid cell aspect ratios.

In addition to reformulating the code to solve for axi-

symmetric flows, it was necessary to develop initial conditions for

the nozzle. The nozzle flow was initially assumed to be uniform

sonic flow. However, with the boundary conditions previously

presented in Sections 5.1.1 through 5.1.4, the flow became subsonic

in both the convergent and divergent sections. As a result, a 1-D

approximation to the Mach number was used to speed up convergence

and to ensure that the flow remained supersonic in the divergent

section of the nozzle. With the reservoir pressure and temperature

specified and assuming the flow was sonic (M = 1) throughout the

length of the throat (Fig. 35), then the temperature, pressure, and

velocity components throughout the throat could be readily obtained

from [54]
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T (1I 1M2 Tres (194)

P 1.Y-M 2 / Pres (195)

and

u -Mc-MV/7; v- O. (196)

It was necessary to perform a Newton iteration to match the area of

the nozzle with the Mach number when dealing with the

convergent/divergent sections of the nozzle (Fig. 6), using [54]

A1[( 2)(Y1M2) 2(y-i) (197)

In Eq. 197, A is the cross-sectional area at the axial location

where M is to determined, and A* is the cross-sectional area of the

throat. Once M had been obtained for a given axial location, Eqs.

194, 195, and 196 were used to obtain the pertinent flow variables.

At this point, it was desired to compare the reformulated

perfect gas code with the nonequilibrium code being run in perfect

gas mode. However, the nonequilibrium code was hardwired to

compute external flows when received [66]. The boundary conditions

were therefore changed to account for nozzle flow (see Sect.

3.2.1). In addition, some other minor modifications were made to
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make the code match up better in perfect gas mode. These included

the addition of Keyes' Law of Viscosity (Eq. 20) for hypersonic

nozzle flow [63]; the hard-wiring of the gas constants to match

those used in the perfect gas code, specifically, R, C,, and Cp; the

zeroing out of the vibrational energy terms with a factor, 5 NECR,

similar to the 2-D/axisymmetric switch 5, which was 0 in perfect

gas mode and 1 in nonequilibrium mode (in Eq. 27, e, -- > 5NECRev);

and the addition of perfect gas boundary conditions (see Sects.

3.1.1 - 3.1.4).

4.1.1 Validation of Perfect Gas NS Solver, Laminar Axi-

symmetric Case. To validate the perfect gas NS solver, the two NS

codes (perfect gas and nonequilibrium/perfect gas) were run in

perfect gas mode on a rather coarse 53x28 (i,j) mesh of the WL Mach

12 nozzle (Fig. 36). The flow field solutions obtained were

compared with the nonequilibrium solution on the same mesh and with

SAIC CFD data mentioned earlier [22]. These comparisons were also

made to determine whether nonequilibrium and chemical reaction

effects would need to be accounted for in the final optimization

code. Direct comparisons would also help to debug the codes. The

case run was laminar, since no turbulence models had been added to

the codes at this time. Convergence was achieved when 1.5

characteristic time units had been achieved, or when the solution's

total residual dropped 6 orders of magnitude. This was the general
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criteria for convergence, unless otherwise specified below.

However, in all cases the residual dropped at least 2-3 orders of

magnitude in achieving a converged solution.

A characteristic time unit is represented by

t- t/t c , (198)

where

t=- RLI/U, (199)

and t is the total time over which a solution has been integrated.

The variables RL and u vary with the case and the mesh used. For

the laminar case on this grid, RL was 3.048 m and U was the u

velocity component in the nozzle throat obtained using Eqs. 194 and

196.

4.1.1.1 Results of Validation of Perfect Gas NS Solver,

Laminar Axisymmetric Case. The final results from the validation

done with the NS perfect gas solver and the NS nonequilibrium

solver in perfect gas mode, as well as with the NS nonequilibrium

solver in NECR mode were very encouraging. Plots of the centerline

static pressure (Fig. 37) and temperature (Fig. 38) vs. the axial

direction showed no significant difference between the solutions in

perfect gas form and that in NECR form. Examining Figs. 39 and 40,

plots of the same flow variables show only a mild difference in the
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throat region, presumably due to nonequilibrium effects. Otherwise

all three solutions converged to the same result as the flow

traversed the nozzle. Thus, though nonequilibrium effects were

seen in the throat region, the effect on the nozzle exit flow is

indiscernible; the author thus concluded that in the laminar case

nonequilibrium effects were not significant for the nozzle in

question.

Plots of the Mach number (Fig. 41) and Pitot pressure (Fig.

42) at the nozzle exit similarly reveal no discernible difference

between all of the solutions. In addition, when comparing with

similar data computed by SAIC [22] for the laminar case, the nozzle

exit results were very comparable. Again, with these results the

author concluded that nonequilibrium effects were not significant

enough in this case to warrant inclusion of such effects in a

laminar solution of this nozzle. In addition, the author concluded

that the perfect gas NS solver and the nonequilibrium/perfect gas

NS solver had been validated in the laminar hypersonic nozzle case.

4.2 Turbulence Models Incorporated into Perfect Gas and NECR

Codes

In order to determine whether the zero-equation Baldwin-Lomax

(B-L) model or the two-equation Yang-Shih (Y-S) k-e model would

best model the turbulence in the nozzle flow, it was necessary to

incorporate both into the perfect gas code and the nonequilibrium
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code. In defining the best model, the objective was to ascertain

which model would provide the turbulent nozzle flow which best

compared with nozzle experimental data. It was possible that some

trade-offs between accuracy and central processing unit (cpu) time

might need to be made, especially in light of the determination

that the solvers used in the subroutine be as efficient as

possible. The B-L model would undoubtedly be faster, since fewer

computations were necessary, but its accuracy had yet to be

determined. The Y-S k-e model might prove more accurate but its

cost in computer time was as yet unknown. These were items which

needed to be addressed before a choice could be made as to which

turbulence model to use throughout the optimization.

The B-L model added to the codes was primarily adapted from a

previously developed modification to the same 2-D perfect gas code

as initially used here [67]. With a minor modification, this

subroutine is the one used in the code when the B-L model is used;

the minor modification consisted of removing a portion of the

subroutine which dealt with recirculating flow. It was felt that

this portion of the subroutine was unnecessary since flow

separation and recirculation were not likely to occur in the nozzle

flow being researched.

The k-e subroutine used in the code was developed by the

author and was based on the work and turbulence model of Yang and

Shih [52]. In order to simplify debugging of the code, a Steger-

Warming (S-W) scheme was initially used, and the Launder-Spaulding
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(L-S) k-e model, used by Rizzetta [41,59], was the k-e model used.

The S-W scheme was used initially because of its simplicity [55].

The L-S model was initially used because the author was provided a

copy of Dr Rizzetta's Beam-Warming 2-D solver, in which the L-S

turbulence model is used. Details of this code are available in

[41]. Hence, for debugging the 2-D/axisymmetric perfect gas solver

and for comparisons with the solution obtained from the Rizzetta

code, the S-W scheme with the L-S k-e model was initially used.

Once the debugging of the S-W scheme with the L-S k-e model was

completed, a switch was made to the Roe scheme, but the use of the

L-S model was maintained. Finally, once all the bugs had been

worked out of that code, the Roe scheme was used with the Y-S k-e

turbulence model in the last revision of the NS code with

turbulence.

All of the work to this point had been done on the perfect gas

code. Later, however, both turbulence models were included in the

nonequilibrium code so that the comparison of the perfect gas

solutions with the nonequilibrium solution could be made for the

nozzle, as discussed in Section 4.2.3.

The turbulence model validation occurred in three phases. The

turbulence models and their associated NS codes were first

validated in 2-D against another CFD solution. The turbulence

models and codes were then validated in 2-D against experimental

data. And finally, the turbulence models and codes were validated

in axisymmetric form against WL Mach 12 nozzle data.
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4.2.1 Turbulence Model Validation Against a CFD Solution.

Both turbulence models were compared to previously validated CFD

results from Rizzetta [68]. The test case was a flat plate at zero

angle of attack (a) which the Rizzetta code had been previously

used to solve. Adiabatic wall conditions were used. The length of

the flat plate and the freestream values of Mach number,

temperature, Reynold's number and the turbulence intensity were

(Fig. 43):

L - 0.9144m, it -2.0, T. 310.930 K, ReL 1.E06, T, .0.005.

It was felt that better solution comparisons could be made if

the same grid were used for all CFD solutions in this validation

case, so the rectangular mesh used was 102x82 (i,j), and was

provided the author by Rizzetta [68]. The grid had a constant

minimum wall-spacing of 2.286E-05 m. The spacing in the x-

direction was a constant 9.144E-03 m. A representative grid is

shown in Fig. 44.

4.2.1.1 CFD Mach 2.0 Flat Plate Results. Initial

lit U Pcomparisons of -, -, and -, plotted against the distance in the
P U p

normal direction, are shown in Figs. 45, 46 and 47. The data for

these plots were taken at the trailing edge of the flat plate.

Though Fig. 45 shows a significant difference in the ratio of local

eddy viscosity to molecular viscosity, Figs. 46 and 47 show that
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this difference does not equate to as large a difference in the

outcome of the normalized u and p.

Concern regarding such a difference in any of the parameters

at the trailing edge led to a check of Cf, the coefficient of

friction. The plot of Cf against the distance along the flat plate

(Fig. 48) showed a large difference in the numerical transition

point (as opposed to the physical one) for the different numerical

models, which could indeed lead to the differences seen above in

the flow parameters at the trailing edge.

A comparison of Fig. 49 with Fig. 50 [47], both plots of Cf vs

Rex, shows that the transition for the Y-S model occurs within the

specified transition range of Rex of 2x101 and 6x105 of the theories

of Prandtl and Blasius. Note that Fig. 50 is a plot for the

incompressible flow about a flat plate at zero degrees incidence;

however, since the Mach number for this case is 2.0, there should

be no significant change of Cf due to compressibility, nor a

significant change in the curves in Fig. 50 [47]. Once again

recall that this is merely a numerical transition and not the

actual physical transition normally associated with turbulence.

Finally, a plot of u vs y at the trailing edge of the plate

(Fig. 51) shows extremely good comparison between the two k-e

models up to approximately a y of 10. From y+ of 10 to the edge

of the boundary layer, a noticeable difference exists between the

two k-e models.
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Although there were some good comparisons between the

different turbulence models and all of the models had been

validated, a question still remained as to whether the L-S or the

Y-S model would more accurately predict the outer layer of a

turbulent boundary layer. The logical way to determine the k-e

model to use in the solver was to test them both on an experimental

flat plate and compare the results. This need defined the

subsequent step of the validation.

4.2.2 Validation of Y-S k-e Model Against Experimental Data.

Once the results of the CFD Mach 2.0 flat plate in Section 4.2.1.1

were obtained, there remained a question with regard to the Y-S

model as to whether or not its solution provided a better

representation of the turbulent boundary layer than the L-S model.

It was thus decided to compare the solution obtained with the Y-S

model against a solution obtained with the L-S model, both using

the Roe-scheme, and compare both against well-validated and well-

documented experimental results. Again, the code in which the

turbulence models were incorporated was perfect gas, full NS, using

a 2-D coordinate system.

The experiment chosen for validation of the Y-S k-e model was

that of Kussoy and Horstman due to the fact that it was a well-

validated experiment [56]. It consisted of a sharp leading-edge

flat plate at -2 degrees a (Fig. 52) in an approximately Mach 8.2
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flow [56]. The length of the flat plate and the freestream values

of Mach number, temperature, Reynold's number and the turbulence

intensity were:

L - 1.870m, M. 8.18, T - 81.0°K, ReL - 7.938E.06, T. - 0.01

The wall temperature was assumed fixed at 300 'K.

The mesh used was 200x90 (i,j) and the minimum wall-spacing

was 5.8928E-06 m (y = 0[1-10]. The spacing in the x-direction

began at 5.893E-03 m and increased continually to 1.420E-02 m. A

representative grid is shown in Fig. 53.

4.2.2.1 Experimental Mach 8.18 Flat Plate Results.

The plot of u vs y' (Fig. 54) did not initially show

particularly good agreement with the computational data although it

did exhibit the proper trends. The lack of agreement was due to

the value of u,. This value was originally determined from the

flow parameters of the computer solution, and since the numerical

transition point is almost assuredly different than the

experimental one, the wall stress can be markedly different between

a computed solution and experimental data. Once the value of u,

from the experiment was used [56] the agreement between the

computational data and the experimental data was much improved

(Fig. 55). It can be seen that the trends associated with the

experimental data are captured much better by the Y-S model.

94



Therefore the Y-S model was the k-e model chosen to be carried

forward for use in further turbulence model comparisons.

4.2.3 Validation of Turbulence Models Against WL Mach 12

Nozzle. The two turbulence model subroutines (B-L and Y-S) were

subsequently incorporated into the perfect gas and NECR codes for

validation against an axisymmetric nozzle case to determine the

impact of high temperature effects on the solution, as well as to

determine which turbulence model provided the best results. The

validation case was the WL Mach 12 nozzle experiment [22], with

boundary conditions previously presented in Sects. 3.1.1-3.1.4.

Following discussions with Korte and Scaggs [53,631, the boundary

layer was specified to be fully turbulent at the inflow. Should

solutions obtained using this boundary condition indicate that it

was erroneous, the incorporation of some transition model would be

required. The turbulence intensity (Ti) for the first two columns

of cells was 0.01 for the Y-S k-e model.

Both turbulence models (B-L and Y-S) were run in each solver.

Both solvers were run in perfect gas mode; the NECR solver was

additionally run in nonequilibrium mode.

Two separate regions were used to calculate the entire nozzle

flowfield, as illustrated in Fig. 56. The reason for splitting the

nozzle domain into two regions was to minimize the use of the

prohibitively small time-marching step associated with the
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relatively small subsonic section. The first region, labelled Item

A, had a mesh 81x126 (i,j) and consisted of the subsonic convergent

section, the cylindrical throat, and a small portion of the

supersonic divergent section. The first point of calculation at

the inflow was located at an x-location of 9.228E-03 m and the

last point at the outflow was located at an x-location of 3.988E-02

m. The x-spacing on the first grid varied, but the nozzle wall

coordinates for the entire nozzle are presented in Appendix A. The

second region, labelled item B, began 10 columns of cells before

the outflow of the first grid, ended shortly before the nozzle

exit, and was computed on a mesh of 242x126. For the second grid,

the first point of calculation at the inflow was located at an x-

location of 3.643E-02 m and the last point at the outflow was

located at an x-location of 2.950 m. The value for y nfor both

grids was on the order of 1, achieving a value of 2-3 in the throat

region of the first grid and decreasing after that.

In order to maintain second-order accuracy at the inflow of

the second mesh, it was necessary to provide two initial columns of

data from the solution of the first grid. The data for these two

columns of cells was never recomputed in the solver for the second

mesh; the inflow boundary conditions were thus fixed.

4.2.3.1 WL Mach 12 Nozzle Results. When the computed

static pressure along the wall for the two different turbulence
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models was compared with that obtained experimentally (Fig. 57),

the B-L turbulence model appeared to better match the experimental

data. The k-e model, on the other hand, displayed increasing

deviation from the experimental data as the flow traversed the

nozzle.

Comparing the computed Mach number and Pitot pressure near the

nozzle exit with experimental data for the perfect gas case (Figs.

58 and 59), the B-L model once again provided a much better

comparison than the k-e model. Though the B-L model appeared to

be producing a slightly thicker boundary layer than exhibited by

experiment, the k-c model produced a markedly thinner boundary

layer and a substantially different Mach number in the inviscid

core. The Mach number obtained using the B-L model was very close

to that of the experiment.

Upon further investigation of the difference in the thickness

of the boundary layer for the two turbulence models, an unexpected

change in the thickness trend was discovered: the k-e model was

producing a thicker boundary layer than the B-L model at the throat

exit location (Figs. 60 and 61). The k-e model thus appeared to

be more diffusive in the subsonic/sonic section of the nozzle and

less diffusive in the supersonic portion of the nozzle. The reason

for this was unclear and remains to be investigated.

Comparison of the computed exit Mach number for the perfect

gas and NECR solvers and their turbulence models showed no

significant difference between the perfect gas and the NECR case
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(Figs. 62 and 63). The lack of difference between the perfect gas

and the nonequilibrium cases was presumed to be due to the fact

that the temperature and pressure in the flow never reach levels at

which nonequilibrium and chemical reaction effects become of

primary importance [25].

4.2.4 Interim Conclusions Drawn. As a result of the

validation efforts in this section, a number of significant

conclusions were drawn. One, the turbulence models had been well

validated against both computational and experimental results.

Two, the B-L model would be used in continuing the current

research; the secondary objective of determining the turbulence

model which aided in more accurately representing the turbulence in

the testbed nozzle flow had thus been accomplished. Three, there

was no need to use the nonequilibrium code to further the research

on the optimization scheme. However, in future research, a

nonequilibrium form of the code will be developed to be used in

high temperature, high pressure nozzles as the perfect gas solver

is limited in such hypersonic nozzle flows.

There were three additional important conclusions that were

drawn at this point. First, with the use of the B-L model the flow

solution would provide more accurate nozzle data. Second, the

assumption that the flow was fully turbulent from the inflow had

been corroborated with the excellent comparative results between
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the fully turbulent flow generated with the B-L model and the

experimental data. And third, the use of the B-L turbulence model

would ensure a more efficient solver, thus contributing to the

primary objective of this research.

4.3 Development/Validation of Perfect Gas PNS Code with Two

Turbulence Models Incorporated

As mentioned previously, the template for the PNS scheme was

that proposed by Korte [49] due to the fact that this was a very

thorough source of PNS formulation using the Roe scheme. The

upwind flux scheme used a central flux approximation for the

inviscid fluxes and the viscous fluxes were centrally-differenced.

Due to the manner in which the computational flux Jacobian was

computed, Vigneron's coefficient (w, Eq. 49) was lagged and based

on the last complete solution of the previous column of grid cells.

4.3.1 Validation of Perfect Gas PNS Solver, Laminar 2-D Case.

A suitable validation case for the perfect gas PNS solver was

needed, and Korte's supersonic laminar flow over a flat plate was

chosen [49]. With this case the PNS solver could be validated

against a well-published test case and its solution.

In addition to validation, the test case was run to determine

if the GCL terms were or were not needed; an important question

remained as to whether a finite volume scheme required the extra

99



GCL terms which Korte had outlined [49]. Note that the GCL terms

are only necessary if the grid is varying in the y-direction as

space-marching occurs. Also note that with a nozzle the y-spacing

will vary in the axial direction, and so it was most important to

determine the necessity of the GCL terms.

The conditions for the flat plate validation case, including

the freestream Mach number and temperature, the wall temperature,

the Reynold's number and the length of the plate (Fig. 64), were

the following:

M - 2.0, T - Twall - 222.0°K, Re L - 1.65E+06, L - 1.0m.

Two grids were used in order to determine the necessity of

inclusion of the GCL terms. The first was a rectangular mesh which

varied in spacing in the x-direction but not in the y-direction;

this grid was used because it precluded the need for the GCL terms.

This grid is labelled Grid A and shown in Fig. 65. The second was

a grid which varied in spacing in both the x- and y-directions,

being clustered closer at the leading edge in both directions and

widening in both directions as the solution marched towards the

back of the plate. This grid was used to determine if the GCL

terms were necessary, with such varied mesh spacing, to generate a

flowfield solution which compared favorably with the first grid.

This second grid is labelled Grid B, as shown in Fig. 66.

The spacing in the x-direction was initially held to a

constant value of 1.OE-06 until the solution reached the point
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where x - 0.025m, at which point the spacing in the x-direction was

allowed to begin increasing to the CFL specified space marching

step. The space-marching step was initially held constant to

preclude instabilities associated with the stagnation region of the

flat plate leading edge. However, once allowed to vary the spacing

in this direction was not allowed to grow by more than 0.01% at

each space-marching step, lest instability should again occur. The

spacing in the y-direction [49] was determined from

Y U) Y20 (199)

where ywa is the flat plate surface, Ymax is the far field free-

stream edge, and

(j-)(200)S- (j= -1)(2 0
Umax 1

The value of 3 was held constant at 1.001 for both grids in order

to capture the boundary layer and to allow for a better comparison

at the flat plate trailing edge. For the fixed grid, the flat

plate was located at y=0 and the freestream far edge was located

at y = 0.8 m. For the varying grid, the flat plate was located at

y = 0 and the freestream far edge was located at y = 0.6 m at the

leading edge and y = 0.8 m at the trailing edge. The flow

parameters were taken from the x = 0.93m station.
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4.3.1.1 CFD Laminar Mach 2.0 Flat Plate Results. Solutions

for Grid A and Grid B with and without GCL terms were obtained.

T
Comparing the respective plots of - vs y against the results of

Korte for the case excluding GCL terms showed poor agreement

between the flow solution obtained using Grid B and the other

solutions, particularly in the peak temperature region (Fig. 67).

TWith the GCL terms included, the plots of - vs y compared very

well for both grids (Fig. 68) . Plots of u vs y also compared
U

very well, again with GCL terms included (Fig. 69). Thus it became

apparent that the GCL terms were necessary for this finite volume

formulation of PNS. It was also evident that the PNS formulation

had been validated for the laminar case.

4.3.2 Validation of Perfect Gas PNS Solver, Turbulent 2-D

Case. Next, the perfect gas PNS solver had to be validated using

each of the two turbulence models. For this validation the Mach

2.0 flat plate case used in Section 4.2.1 for the NS turbulence

model validations was chosen, since validated solutions and their

data were readily available and required no additional

computations. The grid was varied just as it was in the second

mesh of the laminar flat plate PNS validation described in Section

4.3.1.

Recall that the test case was a flat plate at zero degrees a

[68]. The length of the flat plate and the freestream values of
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Mach number, temperature, Reynold's number and the turbulence

intensity were (Fig. 43):

L - 0.9144m, M - 2.0, T - 310.930K, ReL - 1.0E 06, T. - 0.005.

Adiabatic wall conditions were used.

The validation case consisted of running the PNS code with the

individual turbulence models (B-L and Y-S) activated, followed by

comparing resultant solutions against previously obtained NS

results for the same turbulence model. The results would be used

to verify that the PNS code was computing turbulent flow correctly.

4.3.2.1 CFD Turbulent Mach 2.0 Flat Plate Results. The

first case run was that of the B-L model. A plot of normalized u

velocity vs normal distance from the plate and a plot of Mach

number vs normal distance from the plate indicate very similar,

well-matching solutions (Figs. 70 and 71). It must be remembered

that the NS solution is obtained on a rather coarse mesh in

comparison with the PNS solution in the streamwise direction (Fig.

27), and that the fluid center of a grid cell is not necessarily

the geometric center of the grid cell. Nonetheless, because the

geometric center is most easily calculated and the other is not,

the geometric center was the approximated grid point associated

with the flow parameters. This approximation likely leads to the

slight disparity between the two solutions.
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The second case run was that of the Y-S model. Again, a plot

of normalized u vs normal distance and a plot of Mach number vs

normal distance indicates very similar, well-matching solutions

(Figs. 72 and 73). The k-e model appeared to match even better

with the NS solution than did the B-L model. This is possibly due

to the fact that the turbulence is emulated in the k-e model using

conserved variables, whereas this is not the case with the B-L

model. Nonetheless, the B-L model still provided a fairly good

match between the two solvers and it remained the turbulence model

of choice in furtherance of the research.

4.3.3 Perfect Gas PNS Code Validation Against Mach 12 Nozzle.

Validation of the perfect gas PNS solver on the WL Mach 12 nozzle

was subsequently performed. Having previously validated the

perfect gas NS solver on the Mach 12 nozzle using each of the

turbulence models as described in Sect. 4.2.3, the results of this

earlier validation would provide an excellent comparison for the

perfect gas PNS solver on the same case. However, a couple of

minor complications presented themselves during the course of this

work.

The inflow to the PNS solution was two columns of cells from

the first grid of the perfect gas NS solver, just as was provided

to the second grid of the perfect gas NS solver (Fig. 56).

However, too large a space-marching step was required from the
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cell-center of the NS solution to the cell-center of the first PNS

column of grid cells (Fig. 74); the large step size resulted in

instability, which caused the solution to blow up. This was

remedied by extrapolation of the conserved variables using a finite

difference approximation. The extrapolation was made using

U 1,j- +2,, j (u1,jiIJ) (x 1 ,9-x 1 ,j) "  (201)

The space-marching technique employed for integration of the

PNS equations was initially prohibitively slow. In order to

accurately capture the boundary layer in the throat region of the

nozzle, it was necessary, as previously mentioned, to use a grid

stretching parameter (Ph, Eq. 185) of 1.001 in developing the grid

for the NS solver (Fig. 56). And in order for the NS and PNS

solutions to match up well at the inflow to the latter (Fig. 74),

it was necessary for the PNS solver to match the 0. used for the

grid in the NS solver. This value for 0w was too small a value for

most of the latter portion of the nozzle, since the boundary layer

grows quite large in that region; the restriction on Ow maintained

the first grid cell point a very small distance off of the wall

(Fig. 75), thus restricting the space-marching step size (Eq. 184).

The grid adaptation subroutine previously mentioned in Sect.

3.3 was utilized to allow the grid to vary with the thickness of

the boundary layer. This subroutine allows the user to specify the

number of points in the laminar boundary layer or the y;, value for
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a turbulent boundary layer, while not allowing the change from one

space-marching step to the next to be too large. Utilizing this

subroutine and specifying y;n to have a value of 5, the PNS solver

was able to compute almost 3.0 m of nozzle in approximately 30

minutes of Cray cpu time. This was vastly preferred over the hours

of Cray cpu time that would have been necessary without this

subroutine. In addition, the value for P. was bounded. It was

not allowed to become smaller than the initial value of 1.001,

since the most restrictive region was the throat and the region

upstream [53]. Nor was it allowed to get any larger than 1.1

[57,71].

A specific approach was necessary to compute the column of

grid cells for the next space-marching step. Due to the fact that

the space-marching step, Lx (Eq. 184), and the wall distance, yw(x)

(Fig. 75), were interrelated, coupled with the fact that Aywa11

depended on yw(x) (Eq. 185), Lx and AYwall could not be computed

simultaneously. The Ax was computed first; the Ax was thus lagged

with the previous value of Aywajj. Next, the PW was calculated as

previously mentioned in Section 3.3. And finally, the y(j) values

for the next step were computed, using Eq. 185.

At this stage, the perfect gas PNS solver was ready to be

validated against the NS solver, using the Mach 12 nozzle as the

testbed. Concurrent with the validation, a determination was to be

made of how restrictive to be with regard to in order to achieve

a comparable solution to that obtained using the NS solver. Recall
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that the NS solver used a mesh with a 3 value of 1.001 and the yn

value was on the order of 1 (Fig. 56). Two cases were run, one

using a yn value of 5 and the other using a y*in value of 10. Only

the B-L model was used in these calculations.

4.3.3.1 WL Mach 12 Nozzle Results. Plots of Mach number

vs radial distance and Pitot pressure vs radial distance near the

nozzle exit indicate no appreciable difference between the various

solutions (Figs. 76 and 77). Though the value of y'mn plays a large

part in the calculated value of the shear stress at the wall [57],

the plots show that the difference in the output of the nozzle is

negligible when Y'min is varied from 1, as in the PG NS code, to 5

or 10, as in the PG PNS code.

4.3.4 Interim Conclusions Drawn. Two very important

conclusions were drawn at this juncture with regard to the perfect

gas PNS axisymmetric nozzle code. First, based on the data

presented, it was concluded that the Y+min value had little effect

on the nozzle exit flow as long as this value was between 1 and 10;

thus, based on the recommendations of Korte [91, it was decided

that the Y+min value to be used in the nozzle optimization scheme

would be 7. Second, the PNS solver had been well-validated, and

was ready to be incorporated into an efficient optimization scheme.
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4.4 Objectives Satisfied in Chapter 4

Only the one secondary objective of the current research was

satisfied in this chapter. Recall that this was the objective

associated with choosing a turbulence model to further the current

research. Fortunately, the less computationally-intensive B-L

turbulence model proved to provide the more accurate testbed nozzle

flow when compared with experimental data. The B-L model was thus

chosen to be the turbulence model used in the remainder of the

current research. The other two objectives remained to be

satisfied.
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5. Development and Validation of Optimization Scheme

and Code

This chapter presents the development and validation of the

optimization code in order to meet the primary objective of this

research, as well as the other secondary objective.

In the development of the optimization scheme, much effort was

expended in order to achieve a robust computer code. Methods which

did not work well or required too much user interaction were passed

over in order to achieve this goal.

The performance of a number of steps was required prior to

developing an automated optimization code. First, the new nozzle

geometry and design parameters needed to be selected. Second, a

manual optimization search was required, to determine if an optimum

solution to the hypersonic nozzle design problem could be

efficiently found. The rationale behind this was to minimize the

use of computer time in unproductive automatic searches. In this

manual search, the response functions were to be determined, the

response surface was to be mapped, and the optimization method was

to be selected. Following successful completion of the manual

optimization search, the optimization scheme was automated,

validated, and tested for robustness against the Mach 12 nozzle.
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5.1 Design Parameters and New Nozzle Wall Geometry

It was now necessary to develop the design parameters which

would be used to obtain a new nozzle wall geometry. As previously

mentioned, the two variable design parameters chosen to be used in

the optimization scheme were the nozzle attachment angle, Oattachl

and the nozzle exit angle, eexit (Fig. 13). These two design

parameters had been used successfully by Doty in designing 2-D high

Mach propulsive nozzles with MOC/BL techniques, and it was felt

that the two parameters would thus be sufficient to design an

axisymmetric high Mach wind tunnel nozzle [58].

A number of nozzle parameters were specified and fixed in

order to minimize the number of design parameters used in the

optimization procedure (Fig. 13). The x- and y-coordinate values

for the old (WL Mach 12 nozzle) expansion corner, x0. and yoc, as

well as the original expansion angle, #oC, were 0.03279m, 0.00518m,

and 8.842, respectively. The x- and y-coordinates of the nozzle

exit, Xexit and yexit, were fixed at constant values of 3.048m and

0.25365m since these were the coordinates of the WL Mach 12

nozzle. The radius of the attachment corner, rcirc, was fixed as

well at a constant value of 0.00254 meters, since this value

appeared to well represent the existing nozzle radius at the

expansion corner, Yexit"

Once Eattach and eexit were prescribed, the nozzle wall geometry

could be obtained using mathematical equations. First, the x- and
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y-coordinates of the reference point, xa and Ya (Fig. 13) were

determined using geometry to obtain

x a = xc-rcircsin(42 ) , (202)

and

Ya Yoc' (203)

where

x - xo: -dx, (204)

Y yc Yocrcic ('-COS , (205)

4)2 - 4- ' (206)

i -2P ' (207)

and

dx = (Ync-Yo) tan (P2) (208)

Next, the x- and y-coordinates of the attachment point, xb and Yb

(Fig. 13), were determined from [69]

xb - xa rcIXCsin (E ttch) (209)

and
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Yb - Ya+rcirc (l-cos (Eattah) ) . (210)

For the nozzle wall (Fig. 13) from the attachment point, b, to

the nozzle exit, the wall was generated using the equation of a

skewed parabola. The skewed parabola equation is given by [69]

[y -xtanT] 2 .CIx C2 Yw C3 - 0, (211)

where

(BI-B 2 ) - (Xb-XXit)B 3  (212)
(Yb-Yexit) - (Xb-XeXit) tan (eattach)

C1 = B3- C2tan (OGtach), (213)

C 3 : Bl-C x-C 2 Yb, (214)

B2 -(Yexit - xexittan(t)) 2  (215)

Blr -(yb-xbtan(T)) 2 , (216)

and,

B3 - 2 [yb-xbtan(T)] [tan(T)-tan(E attah)]. (217)

This equation, Eq. 211, was solved using a Newton iteration in

order to obtain C1, C2, C3, and T [44]. Then, the nozzle wall ra-
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dius, yw (Eq. 211) could be easily generated, given an axial

location in the nozzle, x (Fig. 13).

Thus, for the different solvers, the wall radius, yw, was

calculated using different equations, depending on what the axial

location was. If the current x-location was in the throat between

points o and a, then the wall height was constant at 0.0051816m.

If the x-location were in the circular throat region, between

points a and b, then the wall height was found using the geometry

of a circle and determined by [69]

Yw " Ya rclc [1-cos (0) ] (218)

where e is determined from e = sin-'[(x-xa)/rzC]. Otherwise, if the

x-location were in the skewed parabola section of the nozzle

contour beyond point b, then Eq. 211 above would be used with the

appropriate coefficients and skew angle, T, to generate the wall

height.

5.2 Manual Optimization Search

The first scheme to be tried manually provided only one NS

inflow to all of the PNS solutions. The point in the nozzle where

the PNS inflow was initially provided was at approximately 2/3 the

length of the throat (Fig. 78). The flow here was supersonic in

the inviscid core and it was felt that this inflow would provide

excellent results since this was well upstream of the nozzle wall
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that was to be changed (Fig. 79). However, an oversight occurred

by overlooking the minimum Mach number, Mi, (Eq. 50). Recalling

that the value for this parameter is about 1.24 for the stated

value of the safety factor, a, the values for the Mach number in

the inviscid core for this inflow were approximately 1.1. Upon

examination of the output data it was ascertained that Vigneron's

coefficient, c) (Eq. 49), was being activated in the inviscid core

at the inflow causing non-conservation of streamwise pressure (Fig.

80).

It was thus determined that the PNS inflow must come from the

supersonic divergent section of the nozzle; the challenge

associated with this determination was that the wall would change

upstream of the PNS inflow necessitating a NS solution for each

change in the design parameters (Fig. 81). Since a NS solution is

obtained using a significantly larger amount of time than a

comparable PNS solution, potentially many more hours of cpu time

might be necessary.

In order to minimize the time associated with generating a new

NS solution for each wall change, a smaller NS grid, grid C (Fig.

82), and associated solution were extracted from the converged

solution to the first NS grid above, Item A (Fig. 56). In addition

to being a smaller grid thus requiring fewer computations per

iteration, the flow throughout Grid C was overall supersonic,

allowing for a larger time step per iteration than would have been

possible had the subsonic/sonic portion of the nozzle been
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included. Grid C was started at 31 points before the outflow of

the grid in Item A. This placed the first column of cells for this

subgrid at 1.998E-4 m, approximately halfway back in the throat

(Fig. 81). The outflow column and all the other columns of cells

in between remained the same as in Item A.

A new grid which accounted for the redesigned nozzle contour

due to a change in design parameters was subsequently obtained in

order to generate a new NS solution; from this new NS solution

would come the inflow for the PNS solver for each nozzle contour.

Grid C was used to generate Grid D (Fig. 83), which had the same

grid dimensions as Grid C, 31x126 (i,j).

A converged NS solution of Grid D was then computed. The NS

solution to the first two columns of cells in Grid D were not

recomputed; the solution for these was obtained from the converged

solution to the grid in Item A and was assumed fixed, presumably a

good approximation given that the cells were far upstream of the

corner that would change with the design parameters (Fig. 83).

With Grid D being used in the perfect gas NS solver and the

converged solution from Item A as the startup solution to Grid D,

the perfect gas NS solver did not appear to require any more than

12000 iterations for a converged solution with a new nozzle wall

contour (Fig. 84). Convergence in this case meant achieving a PNS

inflow which varied a negligible amount with tens of thousands more

iterations and a residual which had decreased 2-3 orders of magni-
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tude and was merely wavering about some mean value. Each case was

run to 18000 iterations to ensure convergence.

At this point, with all of the previously performed flow

solver validations, one could reliably assume that a sufficiently

accurate NS solution could be obtained and provide the appropriate

inflow to the PNS solver, which in turn would produce a

sufficiently accurate nozzle flow solution as well.

5.2.1 Determination of Response Function. The next challenge

was to determine the response function to be used in the

optimization. The first such function considered was a least-

squares residual, specifically the error in the Mach number in the

inviscid high Mach core at the nozzle exit (Fig. 85) [57]. This

was the nozzle exit error, defined by

Erj X=(M I - M desiq7) 2(219)

If necessary, the nozzle centerline error (Fig. 86), defined by

Erl imax (M )2 (220)
'I=1 ( 74 1  design(2 0

would be added to Er to produce

Ert = Er+Erl, (221)

the total error function and another potential response function.
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In performing the summations in Eqs. 219 and 220, the

contributions from certain portions of the flow might be preferred

over other portions. For example, in the nozzle exit error, Eq.

219, the errors from the inviscid core should contribute heavily to

the summation, while the errors from the boundary layer should be

deemphasized due to the likelihood of this portion of the flow

dominating the summation. Similarly, in the nozzle centerline

error, Eq. 220, the errors from the uniform core near the nozzle

exit should contribute heavily to the summation, while the errors

upstream of the uniform core should be deemphasized for the same

reason as the boundary layer in Eq. 219.

In order to thus accentuate the contributions of a particular

portion of the flow towards a given response function, a weighting

factor was required. Accordingly, the computation of Er and Erl

would be modified by some normalized weighting factor, producing

Er - [2] (222)
exi t X 1 ,X' design(2 )

and

Erl [ (Mlla [-c
E -CIL( x[, 1 - desi) 2 ] (223)

to diminish the error contributions of the boundary layer to the

nozzle exit error, Eq. 219, and of the upstream portions of the

nozzle to the nozzle centerline error, Eq. 220. The equation for

the total error function, Ert (Eq. 221), would be unchanged, but

would now use the results from Eqs. 222 and 223.
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To ensure that the code require a minimum of user-interaction

yet emphasize the preferred portions of the flow required the

assumption that the designer had no a priori knowledge of how large

the inviscid high Mach core might be nor of how long the uniform

region might be in the latter portion of the nozzle (Figs. 87 and

88). Hence, the nozzle exit error summation (Eq. 222) was

performed over the entire nozzle exit. As will be discussed next,

the nozzle centerline error (Eq. 223) was performed only over the

last half of the nozzle.

Since it was felt that the uniform core (Fig. 88) would be

predominant only in the last half of any well-designed nozzle, the

nozzle centerline summation (Eq. 223) was not performed over the

first half of the nozzle. In addition, with varying nozzle

geometry the number of points which would contribute to Erl would

vary due to the number of space-marching steps, potentially biasing

Erl. Specifically, the size of and hence the number of space-

marching steps used in the PNS solver depends upon the spacing at

the wall, as shown in Sect. 3.3, Eq. 184. With a smaller

attachment angle, 6 attach, the number of space-marching steps

increases due to a smaller nYwall (Fig. 75). Conversely, with a

larger 6 attach the number of space-marching steps decreases due to a

larger Aywal.

Hence it was decided that though the number of space-

marching steps would still depend on the nozzle geometry, the

number of steps contributing to the nozzle centerline error
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summation (Eq. 223) would be fixed; this would remove the

uncertainty associated with potentially more points contributing to

the error summation and the potential of biasing the result. The

last half of the nozzle is divided into 50 equal regions (Fig. 89).

Each time one of those regions is entered with a space-marching

step, the error associated with the current point on the centerline

contributes to the nozzle centerline error. When the end of the

nozzle is reached, that point contributes to Eq. 223 as well.

Accordingly, iimax (Eq. 223) has a constant value of 51, which is

specified in the code.

Another issue which arose dealt with the aforementioned weight

factors. The criteria to be met by a weighting factor were as

follows: the errors associated with the boundary layer at the

nozzle exit (Eq. 222) and the non-uniform portion of the centerline

(Eq. 223) be diminished; the weighting factors' sum over the

domain of interest be equal to 1; the weighting factors always be

positive; and the weighting factors maintain the nozzle

optimization as a search for a minimum.

It was decided that the nozzle exit and nozzle centerline x-

coordinate Mach profiles most resembled a step-function with a

finite rise time, which is represented by

f(t) = f() (1-e. ) ,(224)

where T is a constant (Fig. 90) [70]. Thus, when t is near 0, f(t)

is near zero. And when t goes to infinity, f(t) approaches f(-).
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An analogous case exists with

o it exp (-IMmaxj-MdeBjn) (225)
- jm exp (-IMimax,j-Mdesi.gl)

used in Er, Eq. 222, and

exp (-IM, -Md gj) (226)
CL jimax ep(I M ,1

Z..d111 exp 1-MIl design I

used in Erl, Eq. 223. In this case, when the power of the

exponential is near zero, that is the Mach number is near Mdesign,

the exponential term is close to 1; this would be the case in the

inviscid high Mach uniform core at the exit if the nozzle were

designed correctly (Fig. 85). When the power of the exponential is

not near zero, that is the Mach number is not very close to Mdesign,

the exponential term is close to zero; this would be the case in

the boundary layer at the nozzle exit or the non-uniform portion

along the nozzle centerline (Fig. 86). Hence, the portions of the

flow which are most important are emphasized and the portions which

are not important are deemphasized. Note that all of the

aforementioned criteria for weighting factors were met with Eqs.

225 and 226.

Once again, these weighting factors preclude the need to

specify some portion of the solution to sample, which would

definitely change with different nozzles. This contributes to the

minimum interaction nature of the computer code.
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The nozzle exit error, Eq. 219, was the sole response function

initially used, but merely having uniform flow at the outflow of

the nozzle is no guarantee that there is indeed a uniform inviscid

core with a minimum of disturbances (Fig. 91). Thus it was decided

that the total response function, Ert (Eq. 221), would provide the

response values, zi (Eq. 114), for the optimization scheme since it

sought to minimize both of the error functions simultaneously.

Additionally, Eqs. 222 and 223 would provide the input to Ert, thus

providing a more user-friendly optimization procedure.

5.2.2 Mapping the Response Surface. In order to provide some

information on the response surface's appearance, the design

parameters (Gattachl Gexit) were varied systematically. The mapping

of the response functions was generated by specifying 5 fixed

values of 0
attach ! and for each of these values, 6 fixed values of

6
exit (Fig. 92). The values for the design parameters used in this

study are presented in Table 1. Each point in Table 1 was input to

the NS/PNS solver to obtain the associated error functions; these

were then used to generate maps of the individual response surfaces

generated by using Er (Eq. 222), Erl (Eq. 223), and Ert (Eq. 221).

The conditions for this study were previously presented in Sects.

3.1.1-3.1.4 and Sect. 3.3.1.
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Table 1. Sampling matrix for response surface mapping.

Oattaoh ()exit

8.740 0.000 0.940 1.890 2.830 3.780 4.580

10.60 0.000 0.940 1.890 2.830 3.780 4.580

12.770 0.000 0.940 1.890 2.830 3.780 4.580

14.90 0.000 0.940 1.890 2.830 3.780 4.580

16.80 0.000 0.940 1i.890 2.830 3.780 4.580

Geometrical constraints placed physical limits on the design

variables, 0
attach and 6 exit. The lower limit of 6

attach was determined

by the constraint of the cone angle, seen if a line were drawn from

the corner of the throat exit to the wall at the outflow of the

nozzle (Fig 93). The upper limit for eattach was determined by the

constraint of the angle at which flow separation would begin to

occur, since this would be unacceptable as an inflow to the PNS

solver. The lower limit of 0
exit was determined by a parallel wall,

equating to a zero degree angle for the wall at the nozzle exit

(Fig. 94). And finally, the upper limit of 0 exit was determined by

the constraint of the cone angle already mentioned. It was hoped

that obtaining the response surface map would accomplish several

objectives. First, it would allow one to see if the optimization

scheme was marching towards a minimum or not. Second, it would

provide more information regarding the response surface, including
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the overall appearance. Third, it would aid in the validation of

the optimization procedure.

5.2.2.1 Results of Response Surface Mapping. With the

design parameter coordinates provided in Table 1 above, response

surfaces were generated using Tecplot to obtain maps for Er, Erl,

and Ert (Figs. 95, 96 and 97). Analysis of the response surfaces

provided a number of insights. First, though they each exhibited

a point of global minimum, the areas associated with the global

minima for Er and Erl were substantially larger than that

associated with Ert. Second, they all exhibited local minima

different from the global minima for each surface. Thus, the

potential existed for the optimization scheme to find a local

minimum and not the global one. Third, the maps did not exhibit

simple first- or second-order behavior, particularly in the low

Oattach region or the high 6 exit region; indeed, many forms of behavior

were evident on the maps, including ridges and plateaus. It should

be pointed out that the potential exists for other local minima not

displayed by Tecplot to exist due to the methodology used within

Tecplot to generate the map surface.

Two conclusions were drawn from the above observations. First,

it appeared that too large an area was associated with the global

minima for Er and Erl. Since its map appeared to indicate a more

precise global minimum region, this confirmed that Ert should be
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used as the response function. Second, since the response surface

map indicated curvature in the region of the local minimum, it was

decided to use a second-order search exclusively in trying to

locate the global minimum. Another factor in this decision was

that fewer sampling points were expected to be required than would

be in the steepest descent method. It was expected that the

second-order search method would find the global minimum, despite

the variety of surface behavior displayed on the map.

5.2.3 First Scheme, Second-Order Response Surface Methodology

(RSM) Search. With the response functions and the response surface

mapping addressed above, the second-order RSM optimization

procedure was implemented. The starting point for this case was

(eattach, eexit) of (12.80, 2.300) with deattach Of 50 and deexit of 1.50.

Each time a new minimum was found using the procedures provided in

Sect. 2.8.2.2, the new center was shifted to that point, and the

values of deattach and deexit were cut by half (Fig. 19) . The search

was continued with successive iterations until either a minimum had

been located or it was determined that the optimization procedure

was not efficiently seeking out a minimum. The conditions for this

study were previously presented in Sects. 3.1.1-3.1.4 and Sect.

3.3.1.
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5.2.3.1 First Scheme Results. The inability of the second-

order search method to locate the global minimum in an expedient

manner is evidenced by the trail on the response surface map (Fig.

98). After five iterations, the second-order search method had

still not located the global minimum and appeared to be having

considerable difficulty in doing so. This confirmed that, with the

response surface contours, an exclusive second-order search method

was not the best choice and another method needed to be explored.

5.2.4 Second Scheme, Korte Least Squares (LS) Method. To

explore potential improvement, the LS method of Korte was tried

next, using the procedures outlined in Sect. 2.8.1. The method of

Korte was used because that method was well proven and required

only one NS solution per sampling grid; this was due to the use of

extremely small de's in obtaining the sampling grid, as will be

shown. In addition, only three sampling points were necessary per

iteration, as compared with at least nine for the RSM methods.

To start, the last identified minimum of the RSM second-order

search method (Fig. 98) provided the starting point (point 1) of a

three point stencil (Fig. 99). The three points of the stencil

always consisted of the last minimum found (point 1), and two other

points (points 2 and 3), which were generated by alternately

holding one of the design parameters of the starting point

constant, while the other was varied by some small de. As
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recommended in [57], the original de was 0.001 e. Thus, the three

points of the first stencil consisted of (Gattachl Gexit) values of

(14.45, 1.8000) for point 1, (14.460, 1.8000) for point 2, and

(14.450, 1.7980) for point 3. The value of dE was subsequently

decreased to 0.0001 e and lower values in an attempt to locate a

minimum in an efficient manner. The conditions for this study were

previously presented in Sects. 3.1.1-3.1.4 and Sect. 3.3.1.

The components of the Jacobian matrix, Eq. 99, were determined

using a first order approximation, and the error functions in Eqs.

222 and 223 were used not as a sum as in Eq. 221, but independently

in this case. Thus, given that p, is Er, P2 is Erl, a, is eattach , and

a 2 is eexit, then the (i,j) component of the Jacobian matrix would

be determined by

Q __-__, (227)
Oaj a -a J,

where m is the index representing a point of the stencil (point 2

or point 3, Fig. 99); m is 2 if j is 1, accounting for a change in

Eattachl or m is 3 if j is 2, accounting for a change in 0 exit.

The solution (Eattach, eeit) for the newly computed minimum point

could be obtained once the Jacobian matrix, Eq. 99, had been fully

computed. First, Eq. 98 was solved for Aak using a simple 2x2

matrix inversion procedure. Then, Aak was added to ak, Eq. 100, to

obtain the newly determined minimum point, ak.l.
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5.2.4.1 Second Scheme Results. Though the Korte LS method

did find the global minimum at one point, it required much

interaction with the code in order to maintain de in a range that

would not cause the optimization procedure to wander wildly about

the surface in search of a minimum. The path taken by the

optimization procedure is shown on the response surface map (Fig.

100).

Unfortunately, local minima consistently began appearing

between two very close sampling points, where presumably no local

minima should be (Fig. 101). It became clear that, with such small

de's, any changes that occurred in the response function were below

the numerical noise level, meaning that the response function

output was not to be trusted to determine a gradient direction. An

attempt to raise the value of the dO's led to erratic search

behavior (Fig. 102). Hence, the attempt to use the Korte LS method

was abandoned.

5.2.5 Third Scheme, Steepest Descent RSM Method. The next

scheme developed was the steepest descent method. The procedures

used were previously given in detail in Sect. 2.8.2.1. The

conditions for this study were previously presented in Sects.

3.1.1-3.1.4 and Sect. 3.3.1.

Beginning with the same center and dO's used in the beginning

of the second-order search above, the five point stencil was used
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to generate the presumed direction of steepest descent (Fig. 15).

Initial g values (Eq. 121) of 1, , 3, 2 were tried. The g values

next needed to be decoded into the (eattach , eexit) coordinates using

Eqs. 125 and 126. Each g value was then run through the NS/PNS

solvers in order to determine the response function associated with

each. If the range of the initial g values was not sufficient to

locate a response surface inflection point along the g vector,

larger values of g were used successively until an inflection point

was located (Fig. 103). For instance, if the error functions

associated with the previously used g values indicated no

inflection point, some amount 5g was added to the last used g value

to obtain the next g value to be used in the search. This

continued until an inflection point was bracketed by assigned g

values (Fig. 103), and then the three closest g value error

functions were used to obtain gw' Eq. 133, and its (Oattachl (exit)

coordinates. The value of g.,w was then run through the NS/PNS

solvers to verify that a new minimum did exist at that (Gattach, eexit)

coordinate. With the new minimum found, that (Gattach , eexit) point

became the center of the five point stencil (Fig. 11) and the dO's

were decreased in the hopes of zeroing in on the minimum. This

procedure was iterated until a minimum had been found which could

not be improved upon.
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5.2.5.1 Third Scheme Results. Surprisingly enough, the

steepest descent method sought out the global minimum, as evidenced

by the path followed on the Ert response surface map (Fig. 104)

This minimum was located within three iterations, and two

subsequent iterations failed to find another in the local vicinity.

Plots of the Mach number vs radial distance at the exit and Mach

number vs axial distance along the centerline indicate that the

minimum does correspond to a uniform Mach 12 inviscid core at the

exit, at least as is likely obtainable using only the two design

parameters (Figs. 105 and 106).

5.2.6 Comparison with Original Mach 12 Nozzle Design. A

comparison between the solutions for the new and old Mach 12

nozzles indicates that the new nozzle design produces a more

accurate test section flow, but with perhaps more disturbances in

the flow. Examination of Fig. 107 shows the exit profile is much

nearer to the design mach number for the new nozzle than it is for

the old nozzle design. Examination of Fig. 108 however indicates

more disturbances in the flow of the new nozzle design as compared

with the original. This may indicate that there are limitations to

the optimization scheme with the selected design parameters. The

optimization scheme does nevertheless optimize the nozzle to the

best of its abilities.
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5.3 Automating the Search

With the steepest descent method's successful location of the

global minimum, the entire optimization scheme was coded, including

the NS solver of the subgrid (Grid D, Fig. 83), the PNS solver, the

steepest descent method, the second-order search method, and all of

the logic previously mentioned. The conditions for this study were

previously presented in Sects. 3.1.1-3.1.4 and Sect. 3.3.1. The

starting point and the de's remained unchanged from the initial

starting values for the manual steepest descent method. However,

the initial values for g in the direction of steepest descent were V 24 1 2 --
the reason for the difference in the initial values of g, as

compared with the manual steepest descent search, was that it was

feared that with such large initial values the automated search

might immediately violate the coordinate limits on the response

surface (Fig. 109).

If a new minimum, as compared with the center point, had not

been found among those three points, the response surface was

apparently increasing in the calculated direction of steepest

descent (Fig. 110). The optimization scheme then reverted to the

second-order search, since 5 of the 9 sampling point response

functions had already been computed (Fig. 12).

If the response surface was decreasing in the direction of

steepest descent, the optimization scheme then checked to see if an

inflection point had been bracketed by the g values used (Fig.
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103). If an inflection point had been bracketed, the optimizer

then computed the g value for the calculated minimum, gnew (Eq.

140), using the second-order bivariate regression equation, Eq.

136, and computed the error function for that point using the

NS/PNS solvers. The error function values for the bracketing g

values and gnew were then compared, with the (Gattach, Gexit) point

associated with the new found minimum then becoming the center for

the next sampling grid (Fig. 15).

If an inflection point had not been found, the optimizer

continued to search in the direction of steepest descent until one

had been located. After the g value of F had been passed, the

delta to the next g value from the current one was obtained by

multiplying the previous delta by 1.1 (Fig. 103).

Assuming that a new minimum had been found, the procedure used

in the steepest descent method then decreased the de's, and with

the new minimum as the center of the new five point stencil began

searching anew for the next minimum (Fig. 15). If this were the

second iteration, then deattach would be decreased to 1/5th its

original value and deexit would be decreased by 1/2; the decrementing

of the de's was accomplished in this manner in order to diminish

the height to width ratio of the sampling stencil in. non-

transformed space (Fig. 111). Additionally, the large initial

deattach was due to the fact that there was initially a much larger

area to sample in that direction (Fig. 109). In subsequent

iterations, both dO's were decreased to 1/2 of their last values
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when a new iteration began; the de's were however not allowed to

decrease to less than 0.1 because it was felt that any changes

below that level would produce changes in the error function which

would be attributed to the numerical noise rather than to the

design parameters.

The iterative process continued until a minimum had been

located and one of two events occurred. Either the user perceived

no discernible difference in the output from the nozzle (Mach

number and Pitot pressure profiles) with the detection of a new

minimum or no other minima had been found in the area and the limit

on the de's had been reached.

5.4 Efficiency of Scheme Methodology Tested

To determine if a minimum could be obtained in a more

efficient manner, a viscous Mach 12 hypersonic nozzle optimization

search was performed with a slightly different sampling stencil.

Except as mentioned here, all of the nozzle details remain

unchanged from Sect. 5.3. The same initial stencil was used as

that of the search performed in Sect. 5.3. However, the second and

later stencils in non-transformed space each constituted a square,

rather than a rectangle, with the newly found minimum at the center

(Fig. 112). Thus for the second iteration, deattach was decreased to

1/5 of its value and deexit to 2/3 of its value in order to square

up the sampling stencil. In subsequent iterations, the dO's were
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decreased to 2/3 of their previous values, rather than 1/2, as in

Sect. 5.3. With these exceptions, the search was performed as it

was described in Sect. 5.3.

5.5 Optimization Code Tested for Robustness

In addition to verifying that the optimization code had been

developed to a satisfactory level of efficiency, it was necessary

to ensure that it was also at a satisfactory level of robustness.

In other words it was important to ensure that given a number of

completely different starting points and non-transformed stencils,

the same global minimum could be obtained. This would validate

that the finding of the global minimum had not been case-specific.

Two separate test cases composed of two different starting

points were run. All of the conditions for the following tests are

the same as those described in Sect. 5.3.

Note that the seemingly less efficient sampling grid reduction

was used in the following two test cases. This was due to the fact

that the computations for these cases were performed simultaneously

as an efficiency check on sampling grid, and it was expected that

the square non-transformed sampling grid and lesser decrementing of

the dO's would be more efficient. As seen above, this did not

appear to be the case. Although the change in sampling grid

reduction resulted in more run time, the objective of the tests

were not compromised.
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5.5.1 First Test. The first test objective was to determine

if the global minimum could be obtained with a different starting

point. The search was begun with a starting point of (eattach € eexit)

of (15, i), which was towards the maximum for eattach and the minimum

for 6 exit (Fig. 109). The dO's were (2.5, 1), and the same dec-

rementing occurred as in the previous search, where deattach was

decreased to 1/5 of its value and deexit to 2/3 of its value for the

second iteration. For subsequent iterations, the decrements in the

dO's were to 2/3 of their previous values.

5.5.2 Second Test. The second test for the optimizer had the

objective of determining if the global minimum could be obtained

starting from a point which was close to a local minimum but not

the global minimum. The starting point for this search was located

at (eattach , Oexit) of (10, 3.5), which was located near the minimum

for 0
attach and the maximum for eexit. As seen in Fig. 97, this point

is closer to the local minimum located at approximate values of

(Oattachf Oexit) of (12.5, 4.0). The dO's had values of (1.0, 1.0).

The decrements in the dO's were to 2/3 of their previous values for

all iterations.

5.6 Use of NECR Solver to Justify Use of Perfect Gas Solver

It was still necessary to prove that for these operating

conditions a hypersonic nozzle of this type would not require the
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use of a nonequilibrium solver in order to correctly optimize the

nozzle contour. Thus, once the newly optimized nozzle shape was

obtained, it was necessary to obtain a solution of the new nozzle

with the aid of the nonequilibrium solver. All other conditions

are as previously specified with the exception of the wall contour

of the testbed WL Mach 12 nozzle.

5.7 Off-Design Conditions

The computational capability of testing off-design conditions

is expected to be of interest in nozzle optimization. Therefore,

as a further test of the perfect gas NS code two off-design

conditions were run. The first case was that of increased exit

pressure. The exit pressure at every point along the nozzle exit

was set at twice that of the nozzle static pressure at the

centerline when no back pressure was specified, as was previously

the case in the NS solution for the Mach 12 nozzle (Sect. 3.1.4).

This situation might be analogous to a buildup of pressure in the

vacuum reservoir of a wind tunnel or to a slight blockage of the

flow due to the model. The second case was that of decreased exit

pressure. The exit pressure was set to half that of the nozzle at

the centerline when no back pressure was specified. This situation

might simulate a startup of a wind tunnel. Note that these cases

could not be run using the perfect gas PNS code, since there is no
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capability of specifying a back pressure using PNS in the

methodology utilized in this research.
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6. Results and Conclusions from Validation of

Optimization Code

This chapter presents the results of the automated validation

cases and the off-design cases from Ch. 5 (Sects. 5.3-5.7) and

addresses conclusions drawn and objectives met or not met. Recall

that the primary objective of this research was to develop and

validate a computer code which, with Navier-Stokes (NS) and

Parabolized Navier-Stokes (PNS) solvers incorporated, would

accurately and robustly redesign the testbed nozzle utilizing a

simple optimization scheme, given the fixed length, throat radius

and exit radius of the original Mach 12 nozzle.

To this point, the primary objective and the secondary

objective of running the off-design cases on the newly designed

nozzle had yet to be achieved. However, the NS and PNS flow codes

had been well-validated. In addition, the Baldwin-Lomax (B-L)

model had proven to be the turbulence model of choice, satisfying

one secondary objective. Also, the flow codes had been used in the

manual operation of the optimization scheme and the global minimum

had been achieved (Sect. 5.2). Finally, the stage was set for the

testing of the automatic operation of the optimization code with

the flow solvers incorporated.
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6.1 Results of Automating the Search

The optimization scheme once again found the global minimum,

and in this case successful automation required four to five

iterations to achieve the global minimum. By four iterations, the

response function minimum had attained a value of 0.02986 as

compared with 0.1305 for the first iteration. The fifth iteration

delivered a value for the minimum of 0.02946. The search was then

terminated as the de's had reached their limit of 0.1. A plot of

the path taken by the optimization scheme is imposed on the

response surface map in Fig. 113.

In order to observe the difference associated with each of the

three response function minima discussed above, plots of Mach

number vs radial distance at the nozzle exit and Mach number vs

axial distance along the nozzle centerline are shown (Figs. 114 and

115). While there was a noticeable difference between the plot for

the first minimum and the other two, there is no discernible

difference between the plots for the last two minima found.

Recall that though the initial sampling stencil was the same

as used in the manual steepest descent search, the stencil along

the path of steepest descent was made different to avoid the

potential of violating one of the design parameter boundaries (Fig.

109). This conservative approach appears to have added one to two

iterations in the search to achieve the global minimum. Complete

resultant path data is presented in Appendix B.
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6.2 Results of Efficiency Test

As suspected, the sampling stencil did have a minor effect in

the efficiency of the optimization scheme. The new sampling method

led to an increase in the number of iterations necessary-to attain

the global minimum. This case required six iterations to reach the

global minimum, as opposed to the four to five iterations seen

earlier. The path taken by the optimization scheme is shown on the

response surface map (Fig. 116). The original non-transformed

rectangular stencil appears to provide quicker convergence, as did

the more aggressive decrementing of the de's. Complete resultant

path data is presented in Appendix B.

6.3 Results of First Test for Robustness

The global minimum was attained using this new starting point.

Five iterations were required to attain the global minimum, and the

search required the code to revert to the second-order search

twice. The path taken by the optimization scheme is shown plotted

on the response surface map (Fig. 117). Complete resultant path

data is presented in Appendix B.

6.4 Results of Second Test for Robustness

The second new starting point did not locate the global

minimum. It did locate a local minimum, but not the local minimum

towards which it appeared likely to be attracted. The local

139



minimum found did not appear on the response surface map,

presumably due to the sparseness of the mapping grid and/or the

methodology used by the Tecplot software package to interpolate

between points. This case required 3 iterations to attain the

local minimum, reverting to second-order search twice. The path

taken by the optimization scheme is shown plotted on the response

surface map (Fig. 118). Complete resultant path data is presented

in Appendix B.

6.5 Results of NECR Solver with New Nozzle Design

The new nozzle design produced no significant differences

between the perfect gas and the NECR NS solvers. Plots taken from

near the nozzle exit of Mach number vs. radial distance and of

Pitot pressure vs. radial distance are presented in Figs. 119 and

120. A plot of Mach number vs. axial distance along the nozzle

centerline is presented in Fig. 121. Based on these results, it is

concluded that the use of the NECR solver in optimizing the testbed

nozzle would have resulted in much wasted computer time.

6.6 Results of Off-Design Cases

In neither case was any appreciable difference seen in the

results in the inviscid core near the nozzle exit. Plots of Mach

number vs. radial distance and Pitot pressure vs radial distance

for the first case are presented in Figs. 122 and 123. Plots of
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Mach number vs. radial distance and Pitot pressure vs radial

distance for the second case are presented in Figs. 124 and 125.

The largest change occurred in the near-wall boundary layer as

expected, since the remainder of the flow is supersonic/hypersonic

and shouldn't be affected by a downstream pressure change except

through the impression of the boundary layer. It is believed that

the changes in the inviscid uniform core are in large part due to

the different ways in which the back pressure is specified in the

two solvers.

6.7 Conclusions

Sects. 6.1-6.3 demonstrated the fact that, given a somewhat

favorable starting point for the optimization scheme, the automatic

code would seek out the "global best" design of a hypersonic nozzle

synonymous with the response surface global minimum of the nozzle's

computed composite error. Through three successful attempts to

locate the global minimum, the optimization code showed indications

of robustness. An indication of the accuracy associated with the

optimization code can be inferred from the comparative results of

Ch. 4 for the Mach 12 nozzle (Sects. 4.2.3.1 and 4.3.3.1).

Sect. 6.4 demonstrates that given a relatively unfavorable

starting point, the optimization code may seek out the best nozzle

design associated with the local minimum, though this might not be

the global minimum. Nonetheless, the optimization code still
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locates the best nozzle design in the area in which it begins its

search.

The primary objective has thus been satisfied in that an

accurate and robust optimization code has been developed which,

with simple response surface methods and state-of-the-art NS and

PNS codes, was used to redesign the testbed hypersonic nozzle with

fixed values of nozzle length, throat radius and exit radius.

There are however two caveats to the statement that the

optimization code is accurate and robust. First, the designer must

have a fairly good idea of where to begin the optimization search

for the "global best" nozzle, lest some local best nozzle be

obtained. Second, and of more importance, the nozzle flow is not

as disturbance-free as a designer might ultimately prefer. It is

strongly suspected after discussions with Korte that this is due to

the use of only two design parameters [53]. Had there been more

time allowed, research into alternate or additional design

parameters such as nozzle length or exit radius would have been

conducted. Such was not the case and this area remains open for

further research.

Regardless of the caveats, the "global best" hypersonic nozzle

obtained with the two design parameters is probably only within a

few percent of the perfect "global best" nozzle, that associated

with the variation of all of the design parameters necessary to

achieve a perfectly designed nozzle which will provide a completely

disturbance-free, uniform, inviscid core at the design Mach number
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at the nozzle exit. The current optimization code's "global best"

nozzle thus represents an extremely good engineering solution to

the hypersonic nozzle design problem, and while not delivering the

perfect nozzle flow, provides at the very least a good baseline

nozzle which can be adjusted with further research to provide the

perfect nozzle flow. Note however that the optimization code's

best nozzle is obtained in a relatively small amount of time due to

the fact that only two design parameters are used. Thus, in the

current optimization code trade-offs may exist between solution

accuracy and time. The addition or substitution of one or more

design parameters in further research may minimize or eliminate any

such trade-offs.

From Sect. 6.5, it is concluded that the use of an NECR code

in the optimization of the testbed nozzle would have likely

amounted to much wasted computer time. This is not to suggest that

in the design of a hypersonic nozzle one may completely disregard

nonequilibrium and chemical reaction effects. In point of fact, it

is very likely that these effects should be accounted for in at

least the last optimization iteration. Though not demonstrated

here, a PNS version of the NECR code was developed and validated

during the course of this research and is currently ready to be

assimilated along with its NS counterpart into an NECR hypersonic

nozzle optimization code. This brings up the point that the

optimization code as designed could be run with almost any NS and
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PNS codes if one paid careful attention to the variables passed

between the parts of the optimization code and the flow codes.

From Sect. 6.6 it is concluded that, though the capability to

test for off-design conditions is likely important to the design

engineer, unless drastic changes are made in the back pressure of

the nozzle relatively insignificant changes will occur in the

nozzle flow. The optimized nozzle was nevertheless tested for the

effect of changing back pressure and the results analyzed,

satisfying the final objective of this research.

In summary, all of the objectives for this research were

satisfied and an excellent engineering design tool has been

created.

144



Appendixc A: WL Mach 12 Nozzle Wall Data (x,y) (in)

Nozzle Wall

Radial Distance

X -Om Axial Distance x - 3.OA8n-

-O.74295E-O1 0.32916E-01 -0.10160E-01 0.14526E-01
-0.73660E-01 0.32736E-01 -O.76200E-02 0.13797E-01
-0.71120E-01. 0.32007E-01 -O.50800E-02 O.13068E-O1
-O.68580E-O1 0.31278E-01. -O.25400E-02 0.12342E-01
-0.66040E-0O1 0.30549E-01 O.OOOOOE+OO 0.11613E-01
-0.63500E-01 0.29822E-01 0.12700E-02 0.11250E-01.
-0.60960E-01 0.29093E-01 0.25400E-02 0.10884E-01
-0.58420E-01 0.28364E-01 O.38100E-02 0.10521E-01
-0.55880E-01. 0.27635E-01 O.50800E-02 0.10155E-01
-0.53340E-01 0.26909E-01 0.63500E-02 0.97917E-02
-O.50800E-2. 0.26180E-01 O.76200E-02 0.94285E-02
-0.48260E-01 0.25451E-01. 0.88900E-02 0.90627E-02
-0.45720E-0O1 0.24722E-01 0.10160E-01 0.86995E-02
-O.43180E-O1 0.23995E-01 0.11430E-01 0.83363E-02
-0..40640E-01 0.23266E-01 0.12700E-01 0.79705E-02
-O.38100E-O1 0.22537E-01 0.13970E-01 0.76073E-02
-0.35560E-01 0.21808E-01 0.15240E-01 0.72415E-02
-0.33020E-01 0.21082E-01. 0.16510E-01 0.68783E-02
-0.30480E-01. 0.20353E-01 0.17780E-01 0.65151E-02
-0.27940E-01 0.19624E-01. 0.19050E-01. 0.61493E-02
-0.25400E-01 0.18895E-01 0.20320E-01, 0.57861E-02
-0.22860E-01 0.18169E-01 0.21590E-01 0.54229E-02
-0.20320E-01 0.17440E-01 O.22428E-O1 0.51816E-02
-0.17780E-01 0.16711E-01 0.22860E-01 0.51816E-02
-0.15240E-01 0.15982E-01 O.23368E-O1 0.51816E-02
-0.12700E-01 0.15255E-01 0.23876E-01 0.51816E-02
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0.24384E-01 0.51816E-02 0.11176E+00 0.17643E-01
0.24892E-01 0.51816E-02 0.11430E+00 0.18042E-01
0.25400E-01 0.51816E-02 0.11684E+00 0.18443E-01
0.25908E-01 0.51816E-02 0.11938E+00 0.18844E-01
0.26416E-01 0.51816E-02 0.12192E+00 0.19246E-01
0.26924E-01 0.51816E-02 0.12446E+00 0.19647E-01
0.27432E-01 0.51816E-02 0.12700E+00 0.20046E-01
0.27940E-01 0.51816E-02 0.12954E+00 0.20447E-01
0.28448E-01 0.51816E-02 0.13208E+00 0.20848E-01
0.28956E-01 0.51816E-02 0.13462E+00 0.21250E-01
0.29464E-01 0.51816E-02 0.13716E+00 0.21651E-01
0.29972E-01 0.51816E-02 0.13970E+00 0.22050E-01
0.30480E-01 0.51816E-02 0.14224E+00 0.22451E-01
0.30988E-01 0.51816E-02 0.14478E+00 0.22852E-01
0.31496E-01 0.51816E-02 0.14732E+00 0.23254E-01
0.32004E-01 0.51816E-02 0.14986E+00 0.23652E-01
0.32512E-01 0.51816E-02 0.15240E+00 0.24054E-01
0.32791E-01 0.51816E-02 0.15494E+00 0.24455E-01
0.33020E-01 0.52172E-02 0.15748E+00 0.24856E-01
0.35560E-01 0.56185E-02 0.16002E+00 0.25258E-01
0.38100E-01 0.60198E-02 0.16256E+00 0.25657E-01
0.40640E-01 0.64211E-02 0.16510E+00 0.26058E-01
0.43180E-01 0.68199E-02 0.16764E+00 0.26459E-01
0.45720E-01 0.72212E-02 0.17018E+00 0.26860E-01
0.48260E-01 0.76225E-02 0.17272E+00 0.27262E-01
0.50800E-01 0.80239E-02 0.17526E+00 0.27661E-01
0.53340E-01 0.84252E-02 0.17780E+00 0.28062E-01
0.55880E-01 0.88240E-02 0.18034E+00 0.28463E-01
0.58420E-01 0.92253E-02 0.18288E+00 0.28865E-01
0.60960E-01 0.96266E-02 0.18542E+00 0.29263E-01
0.63500E-01 0.10028E-01 0.18796E+00 0.29665E-01
0.66040E-01 0.10427E-01 0.19050E+00 0.30066E-01
0.68580E-01 0.10828E-01 0.19304E+00 0.30467E-01
0.71120E-01 0.11229E-01 0.19558E+00 0.30869E-01
0.73660E-01 0.11631E-01 0.19812E+00 0.31267E-01
0.76200E-01 0.12032E-01 0.20066E+00 0.31669E-01
0.78740E-01 0.12431E-01 0.20320E+00 0.32070E-01
0.81280E-01 0.12832E-01 0.21590E+00 0.34066E-01
0.83820E-01 0.13233E-01 0.22860E+00 0.36048E-01
0.86360E-01 0.13635E-01 0.24130E+00 0.38014E-01
0.88900E-01 0.14036E-01 0.25400E+00 0.39967E-01
0.91440E-01 0.14435E-01 0.26670E+00 0.41902E-01
0.93980E-01 0.14836E-01 0.27940E+00 0.43825E-01
0.96520E-01 0.15237E-01 0.29210E+00 0.45733E-01
0.99060E-01 0.15639E-01 0.30480E+00 0.47625E-01
0.10160E+00 0.16038E-01 0.31750E+00 0.49505E-01
0.10414E+00 0.16439E-01 0.33020E+00 0.51369E-01
0.10668E+00 0.16840E-01 0.34290E+00 0.53218E-01
0.10922E+00 0.17242E-01 0.35560E+00 0.55055E-01
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0.36830E+00 0.56876E-01 0.99060E+00 0.13113E+00
0.38100E+00 0.58684E-01 0.10033E+01 0.13237E+00
0.39370E+00 0.60480E-01 0.10160E+01 0.13361E+00
0.40640E+00 0.62260E-01 0.10287E+01 0.13484E+00
0.41910E+00 0.64028E-01 0.10414E+01 0.13606E+00
0.43180E+00 0.65781E-01 0.10541E+01 0.13727E+00
0.44450E+00 0.67521E-01 0.10668E+01 0.13848E+00
0.45720E+00 0.69248E-01 0.10795E+01 0.13967E+00
0.46990E+00 0.70963E-01 0.10922E+01 0.14085E+00
0.48260E+00 0.72664E-01 0.11049E+01 0.14203E+00
0.49530E+00 0.74353E-01 0.11176E+01 0.14320E+00
0.50800E+00 0.76027E-01 0.11303E+01 0.14435E+00
0.52070E+00 0.77691E-01 0.11430E+01 0.14550E+00
0.53340E+00 0.79339E-01 0.11557E+01 0.14664E+00
0.54610E+00 0.80978E-01 0.11684E+01 0.14778E+00
0.55880E+00 0.82603E-01 0.11811E+01 0.14890E+00
0.57150E+00 0.84216E-01 0.11938E+01 0.15002E+00
0.58420E+00 0.85816E-01 0.12065E+01 0.15113E+00
0.59690E+00 0.87404E-01 0.12192E+01 0.15223E+00
0.60960E+00 0.88981E-01 0.12319E+01 0.15332E+00
0.62230E+00 0.90546E-01 0.12446E+01 0.15440E+00
0.63500E+00 0.92098E-01 0.12573E+01 0.15548E+00
0.64770E+00 0.93640E-01 0.12700E+01 0.15655E+00
0.66040E+00 0.95169E-01 0.12827E+01 0.15761E+00
0.67310E+00 0.96685E-01 0.12954E+01 0.15866E+00
0.68580E+00 0.98191E-01 0.13081E+01 0.15971E+00
0.69850E+00 0.99687E-01 0.13208E+01 0.16075E+00
0.71120E+00 0.10117E+00 0.13335E+01 0.16178E+00
0.72390E+00 0.10264E+00 0.13462E+01 0.16280E+00
0.73660E+00 0.10410E+00 0.13589E+01 0.16382E+00
0.74930E+00 0.10555E+00 0.13716E+01 0.16483E+00
0.76200E+00 0.10699E+00 0.13843E+01 0.16583E+00
0.77470E+00 0.10842E+00 0.13970E+01 0.16682E+00
0.78740E+00 0.10984E+00 0.14097E+01 0.16781E+00
0.80010E+00 0.11125E+00 0.14224E+01 0.16879E+00
0.81280E+00 0.11264E+00 0.14351E+01 0.16976E+00
0.82550E+00 0.11403E+00 0.14478E+01 0.17073E+00
0.83820E+00 0.11540E+00 -0.14605E+01 0.17169E+00
0.85090E+00 0.11677E+00 0.14732E+01 0.17264E+00
0.86360E+00 0.11812E+00 0.14859E+01 0.17358E+00
0.87630E+00 0.11947E+00 0.14986E+01 0.17452E+00
0.88900E+00 0.12080E+00 0.15113E+01 0.17546E+00
0.90170E+00 0.12213E+00 0.15240E+01 0.17638E+00
0.91440E+00 0.12344E+00 0.15367E+01 0.17730E+00
0.92710E+00 0.12475E+00 0.15494E+01 0.17821E+00
0.93980E+00 0.12604E+00 0.15621E+01 0.17912E+00
0.95250E+00 0.12733E+00 0.15748E+01 0.18002E+00
0.96520E+00 0.12860E+00 0.15875E+01 0.18092E+00
0.97790E+00 0.12987E+00 0.16002E+01 0.18181E+00
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0.16129E+01 0.18269E±00 0.22352E+01 0.21941E+00
0.16256E+01 0.18356E+00 0.22479E+01 0.22005E+00
0.16383E+01 0.18443E+00 0.22606E+01 0.22068E+00
0.16510E+01 0.18530E+00 0.22733E+01 0.22131E+00
0.16637E+01 0.18615E+00 0.22860E+01 0.22194E+00
0.16764E±01 0.18700E+00 0.22987E+01 0.22256E+00
0.16891E+01 0.18785E+00 0.23114E±01 0.22317E+00
0.17018E+01 0.18869E+00 0.23241E+01 0.22379E+00
0.17145E+01 0.18952E+00 0.23368E+01 0.22440E+00
0.17272E+01 0.19036E+00 0.23495E+01 0.22501E+00
0.17399E+01 0.19209E+00 0.23622E+01 0.22561E+00
0.17526E+01 0.19200E+00 0.23749E+01 0.22621E+00
0.17653E+01 0.19281E+00 0.23876E+01 0.22680E+00
0.17780E+01 0.19361E+00 0.24003E+01 0.22740E+00
0.17907E+01 0.19442E+00 0.24130E+01 0.22799E+00
0.18034E+01 0.19521E+00 0.24257E+01 0.22857E+00
0.18161E+01 0.19600E+00 0.24384E+01 0.22915E+00
0.18288E+01 0.19679E+00 0.24511E+01 0.22973E+00
0.18415E+01 0.19757E+00 0.24638E+01 0.23031E+00
0.18542E+01 0.19834E±00 0.24765E+01 0.23088E+00
0.18669E+01 0.19911E+00 0.24892E+01 0.23145E+00
0.18,796E+01 0.19988E+00 0.25019E+01 0.23201E+00
0.18923E+01 0.20064E+00 0.25146E+01 0.23258E+00
0.19050E+01 0.20139E+00 0.25273E+01 0.23314E+00
0.19177E+01 0.20214E+00 0.25400E+01 0.23369E+00
0.19304E+01 0.20289E+00 0.25527E+01 0.23425E+00
0.19431E+01 0.20363E+00 0.25654E+01 0.23480E+00
0.19558E+01 0.20436E+00 0.25781E+01 0.23534E+00
0.19685E+01 0.20509E+00 0.25908E+01 0.23589E+00
0.19812E+01 0.20582E+00 0.26035E±01 0.23643E+00
0.19939E+01 0.20654E+00 0.26162E+01 0.23697E+00
0.20066E+01 O.2*0726E+OO 0.26289E±01 0.23750E+00
0.20193E+01 0.20797E+00 0.26416E+01 0.23803E+00
0.20320E+01 0.20870E+00 0.26543E+01 0.23856E+00
0.20447E+01 0.20938E+00 0.26670E+01 0.23909E+00
0.20574E+01 0.21008E+00 0.26797E+01 0.23961E+00
0.20701E+01 0.21077E+00 0.26924E+01 0.24013E+00
0.20828E+01 0.21146E+00 0.27051E+01 0.24065E+00
0.20955E+01 0.21215E+00 0.27178E+01 0.24117E+00
0.21082E+01 0.21283E+00 0.27305E+01 0.24168E+00
0.21209E+01 0.21351E+00 0.27432E+01 0.24219E+00
0.21336E+01 0.21418E+00 0.27559E±01 0.24269E+00
0.21463E+01 0.21485E+00 0.27686E+01 0.24320E+00
0.21590E+01 0.21551E+00 0.27813E+01 0.24370E+00
0.21717E+01 0.21617E+00 0.27940E+01 0.24420E+00
0.21844E+01 0.21683E+00 0.28067E+01 0.24470E+00
0.21971E+01 0.21748E+00 0.28194E±01 0.24519E+00
0.22098E+01 0.21813E+00 0.28321E+01 0.24568E+00
0.22225E+01 0.21877E+00 0.28448E+01 0.24617E+00
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0.28575E+01 0.24665E+00 0.29718E+01 0.25092E+00
0.28702E+01 0.24714E+00 0.29845E+01 0.25138E+00
0.28829E+01 0.24762E+00 0.29972E+01 0.25184E+00
0.28956E+01 0.24810E+00 0.30099E+01 0.25230E+00
0.29083E+01 0.24857E+00 0.30226E+01 0.25275E+00
0.29210E+01 0.24905E+00 0.30353E+01 0.25321E+00
0.29337E+01 0.24952E+00 0.30480E+01 0.25365E+00
0.29464E+01 0.24999E+00
0.29591E+01 0.25045E+00
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-Appendix B: Search Path Tabulated Data

B.1 Tabulated Path Data for Automatic Search from Sect. 6.1

eattaebEei Er Erl Ert
(Begin first-order search)
.1276873E+02 .2291832E+01 .7081753E-01 .9296892E-01 .1637864E+00
.1776873E+02 .3791832E+01 .1177701E+00 .1003611E+00 .2181312E±00
.1776873E+02 .7918313E+00 .2453667E-01 .1020390E+00 .1265757E+00
.7768725E+01 .7918313E+00 .1795622E+00 .1560986E+00 .3356608E+00
.7768725E+01 .3791832E+01 .5881502E-01 .1098336E+00 .1686486E+00
(Begin sampling in direction of steepest descent)
.1436688E+02 .2518504E+01 .2513864E-01 .1702819E+00 .1954205E+00
.1596504E+02 .2745177E+01 .1965192E-01 .1108700E+00 .1305219E+00
.1756320E+02 .2971849E+01 .3326964E-01 .9911651E-01 .1323861E+00
(Inflection point detected, calculate gne and run case)
.1345775E+02 .2389559E+0l .5058493E-01 .1578817E+00 .2084667E+00
(Neighboring point, not gnew,,, is minimum; begin second iteration,
first-order search)
.1596504E+02 .2745177E+01 .1965192E-01 .1108700E+00 .1305219E+00
..1763174E+02 .3245177E+01 .2584804E-01 .1883572E+00 .2142052E+00
.1763174E+02 .2245177E+01 .1092248E+00 .1031036E+00 .2123284E+00
.1429834E+02 .2245177E+01 .1568505E-01 .9243594E-01 .1081210E+00
.1429834E+02 .3245177E+0-1 .1102343E+00 .1001207E+00 .2103550E+00
(Begin sampling in direction of steepest descent)
.1554069E+02 .2622524E+01 .1907666E-01 .1085871E+00 .1276638E+00
.1511633E+02 .2499870E+01 .1804721E-01 .1062700E+00 .1243172E+00
.1469198E+02 .23772117E+01 .1649691E-01 .1105367E+00 .1270336E+00
(Inflection point detected, calculate gne, and run case)
.1509428E+02 .2493496E+01 .1801868E-01 .1047688E+00 .1227875E+00
(g,,w is new minimum, begin third iteration, first-order search)
.1509428E+02 .2493496E+01 .1801868E-01 .1047688E+00 .1227875E+00
.1564984E+02 .2660166E+01 .1998629E-01 .1060464E+00 .1260327E+00
.1564984E+02 .2326826E+01 .1775123E-01 .9388037E-01 .1116316E+00
.1453872E+02 .2326826E+01 .1612252E-01 .1096304E±00 .1257529E+00
.1453872E+02 .2660166E+01 .3686050E-01 .1916600E+00 .2285205E+00
(Begin sampling in direction of steepest descent)
.1523284E+02 .2451729E+01 .2239647E-01 .9700075E-01 .1193972E+00
.1537139E+02 .2409962E+01 .2656149E-01 .9102097E-01 .1175825E+00
.1550995E+02 .2368195E+01 .2174513E-01. .8891058E-01 .1106557E+00
.1564851E+02 .2326428E+01 .1775573E-01 .9413861E-01 .1118943E+00
(Inflection point detected, calculate gne, and run case)
.1555821E+02 .2353647E+0l .l881112E-01 .8705963E-01 .1058707E+00
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gnwis new minimum, begin fourth iteration, first-order search)
.1555821E+02 .2353647E+01 .1881112E-01 .8705963E-01 .1058707E+00
.1574340E+02 .2453647E+01 .2031832E-01 .8986763E-01 .1101859E+00
.1574340E+02 .2253647E+01 .3034221E-01 .8751059E-01 .1178528E+00
.1537302E+02 .2253647E+01 .1741287E-01 .7207244E-01 .8948531E-01
.1537302E+02 .2453647E+01 .2606265E-01 .9388064E-01 .1199433E+00
(Begin sampling in direction of steepest descent)
.1551680E±02 .2326262E+01 .1816967E-01 .8889402E-01 .1070637E+00
.1547539E+02 .2298876E+01 .1777013E-01 .8367001E-01 .1014401E+00
.1543398E+02 .2271491E+01 .1752177E-01 .7724496E-01 .9476673E-01
.1539256E+02 .2244105E+01 .1709301E-01 .7169487E-01 .8878788E-01
.1534701E+02 .2213982E+01 .1654894E-01 .6469413E-01 .8124307E-01
.1529690E+02 .2180845E+01 .1662438E-01 .5798683E-01 .7461120E-01
.1524179E+02 .2144395E+01 .1541290E-01 .5056105E-01 .6597395E-01
.1518115E+02 .2104300E+01 .1595800E-O1 .4277686E-01 .5873486E-01
.1511446E±02 .2060196E+01 .1565748E-01 .3553693E-01 .5119441E-01
.1504110E+02 .2011681E+01 .1593548E-01 .2789349E-01 .4382898E-01
.1496040E+02 .1958314E+01 .1597533E-01 .2160643E-01 .3758176E-01
.1487163E+02 .1899611E+01 .1635641E-01 .1584001E-01 .3219641E-01
.1477398E+02 .1835038E+01 .1622345E-01 .1383636E-01 .3005981E-01
.1466657E+02 .1764007E+01 .1789275E-01 .1607675E-01 .3396950E-01
(Inflection point detected, calculate anew and run case)
.1478431E+02 .1841869E+01 .1592740E-01 .1392990E-01 .2985730E-01
(gn,, is new minimum, begin fifth iteration, first-order search)
.1478431E+02 .1841869E+01 .1592740E-01 .1392990E-01 .2985730E-01
.1488431E+02 .1941869E+01 .1697945E-01 .1845712E-01 .3543657E-01
.1488431E+02 .1741869E+01 .1731621E-01 .1974095E-01 .3705717E-01
.1468431E+02 .1741869E+01 .1608365E-01 .1810649E-01 .3419014E-01
.1468431E+02 .1941869E+01 .2370189E-01 .1644068E-01 .4014256E-01
(Begin sampling in direction of steepest descent)
.1479813E+02 .1809325E+01 .1503192E-01 .1442836E-01 .2946028E-01
.1481194E+02 .1776781E+01 .1498256E-01 .1623601E-01 .312185"/E-01
.1482576E+02 .1744236E+01 .1554608E-01 .1886545E-01 .3441153E-01
(Inflection point detected, calculate gew and run case)
.1478810E+02 .1832938E+01 .1581149E-01 .1393989E-01 .2975138E-01
(New minimum at neighboring point, not gnew, minimum de reached)
.1479813E+02 .1809325E+01 .1503192E-01 .1442836E-01 .2946028E-01
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B.2 Tabulated Path Data for Automatic Search/Efficiency Check from
Sect. 6.2

Oattach 8xi Er Erl Ert
(Begin first-order search)
.1276873E+02 .2291832E+01 .7081753E-01 .9296892E-01 .1637864E+00
.1776873E+02 .3791832E+01 .1177701E+00 .1003611E+00 .2181312E+00
.1776873E+02 .7918313E+00 .2453667E-01 .1020390E+00 .1265757E+00
.7768725E+01 .7918313E+00 .1795622E+00 .1560986E+00 .3356608E+00
.7768725E+01 .3791832E+01 .5881502E-01 .1098336E+00 .1686486E+00
(Begin sampling in direction of steepest descent)
.1436688E+02 .2518504E+01 .2513864E-01 .1702819E+00 .1954205E+00
.1596504E+02 .2745177E+01 .1965192E-01 .1108700E+00 .1305219E+00
.1756320E+02 .2971849E+01 .3326964E-01 .9911651E-01 .13238611E+00
(Inflection point detected, calculate anew, and run case)
.1345775E+02 .2389559E+01 .5058493E-01 .1578817E+00 .2084667E+00
(Neighboring point, not gnew, is minimum; begin second iteration,
first-order search)
.1596504E+02 .2745177E+01 .1965192E-01 .1108700E+00 .130521.9E+00
.1696504E+02 .3745177E+01 .1171590E+00 .9977092E-01 .2169299E+00
.1696504E+02 .1745177E+01 .4858755E-01 .1949168E-01 .6807923E-01
.1496504E+02 .1745177E+01 .2016666E-01 .1972702E-01 .3989368E-01
.1496504E+02 .3745177E+01 .1091028E+00 .9822861E-01 .2073314E+00
(Begin sampling in direction of steepest descent)
.1592310E+02 .2394120E±01 .2266946E-01 .9805553E-01 .1207250E+00
.1588116E+02 .2043062E+01 .5843261E-01 .5190862E-01 .1103412E+00
.1583923E+02 .1692005E+01 .3954539E-01 .1631110E-01 .5585650E-01
.1579729E+02 .1340948E±01 .2858088E-01 .9878305E-01 .1273639E+00
(Inflection point detected, calculate anew and run case)
.1584206E+02 .1715721E+01 .4048973E-01 .1600031E-01 .5649004E-01
(Neighboring point, not ge,, is minimum; begin third iteration,
first-order search)
.1583923E+02 .1692005E+01 .3954539E-01 .1631110E-01 .5585650E-01
.1628367E+02 .2136445E+01 .7259736E-01 .7399603E-01 .1465934E+00
.1628367E+02 .1247565E+01 .2608620E-01 .1124356E+00 .1385218E±00
.1539479E+02 .1247565E+01 .2716054E-01 .1917570E+00 .2189176E+00
.1539479E+02 .2136445E+01 .1966409E-01 .5634728E-01 .7601137E-01
(Begin sampling in direction of steepest descent)
.1585064E+02 .1848724E+01 .4862365E-01 .2245980E-01 .7108345E-01
.1586204E+02 .2005442E+01 .5770983E-01 .4501746E-01 .1027273E+00
.1587345E+02 .2162161E+01 .5557708E-01 .7452644E-01 .1301035E+00
(Error function not decreasing in direction of steepest descent,
perform second-order search)
.1583923E+02 .2320538E+01 .2780270E-01 .1027097E+00 .1305124E+00
.1583923E+02 .1063472E+01 .2760812E-01 .1638776E+00 .1914858E+00
.1646776E+02 .1692005E+01 .4321268E-01 .1304292E-01 .5625560E-01
.1521070E+02 .1692005E+01 .3025850E-01 .2397966E-01 .5423816E-01
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(With nine-point stencil done, compute new minimum location, run
case)
.1530583E+02 .1954283E+01 .2867062E-01 .2958956E-01 .5826018E-01
(New minimum occurs on one of nine stencil points, not calculated
minimum point; begin fourth iteration, first-order search)
.1521070E+02 .1692005E+01 .3025850E-01 .2397966E-01 .5423816E-01
.1550700E+02 .1988305E+01 .4072891E-01 .3911181E-01 .7984071E-01
.1550700E+02 .1395705E+01 .2926954E-01 .9114892E-01 .1204185E+00
.1491440E+02 .1395705E+01 .2556720E-01 .1245963E+00 .1501635E+00
.1491440E+02 .1988305E+01 .1820521E-01 .2244430E-01 .4064951E-01
(Begin sampling in direction of steepest descent)
.1520412E+02 .1796556E+01 .2915201E-01 .1974841E-01 .4890042E-01
.1519754E+02 .1901107E+01 .2635736E-01 .2358737E-01 .4994473E-01
.1519096E+02 .2005658E+01 .1989707E-01 .3163798E-01 .5153505E-01
(Inflection point detected, calculate gnew and run case)
.1520798E+02 .1735145E+01 .3005803E-01 .2077856E-01 .5083659E-01
(Neighboring point, not gnew, is minimum; begin fifth iteration,
first-order search)
.1520412E+02 .1796556E+01 .2915201E-01 .1974841E-01 .4890042E-01
.1540165E+02 .1994089E+01 .3338242E-01 .3714976E-01 .7053218E-01
.1540165E+02 .1599023E+01 .3239598E-01 .3237467E-01 .6477065E-01
.1500659E+02 .1599023E+01 .2508341E-01 .4107528E-01 .6615869E-01
.1500659E+02 .1994089E+01 .1600000E-01 .2581663E-01 .4181662E-01
(Begin sampling in direction of steepest descent)
.1514637E+02 .1835824E+01 .2530014E-01 .1954487E-01 .4484501E-01
.1508861E+02 .1875092E+01 .2073894E-01 .1957144E-01 .4031038E-01
.1503086E+02 .1914359E+01 .1800037E-01 .1954044E-01 .3754081E-01
.1497311E+02 .1953627E+01 .1592261E-01 .2178841E-01 .3771103E-01
(Inflection point detected, calculate gnew and run case)
.1500533E+02 .1931720E+01 .1648892E-01 .2047684E-01 .3696576E-01
(gne is new minimum, begin sixth iteration, first-order search)
.1500533E+02 .193172OE+01 .1648892E-01 .2047684E-01 .3696576E-01
.1513702E+02 .2063410E+01 .1564022E-01 .3569823E-01 .5133846E-01
.1513702E+02 .1800030E+01 .2606521E-01 .1901789E-01 .4508310E-01
.1487364E+02 .1800030E+01 .1539135E-01 .1578229E-01 .3117364E-01
.1487364E+02 .2063410E+01 .2304153E-01 .3118604E-01 .5422757E-01
(Begin sampling in direction of steepest descent)
.1498894E+02 .1888139E+01 .1758770E-01 .1726143E-01 .3484912E-01
.1497256E+02 .1844559E+01 .1702734E-01 .1639507E-01 .3342242E-01
.1495617E+02 .1800978E+01 .1780645E-01 .1670593E-01 .3451237E-01
(Inflection point detected, calculate gnew and run case)
.1497146E+02 .1841643E+01 .1727491E-01 .1612557E-01 .3340047E-01
(gnew is new minimum, stop search)
.1497146E+02 .1841643E+01 .1727491E-01 .1612557E-01 .3340047E-01
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B.3 Tabulated Path Data for Automatic Search/First Robustness Test
from Sect. 6.3

Oattach b.i Er Erl Ert
(Begin first-order search)
.1500000E+02 .1000000E+01 .1787525E+00 .4189779E+00 .5977305E+00
.1750000E+02 .2000000E+01 .2402179E+00 .5937943E-01 .2995973E+00
.1750000E+02 .OOOOOOOE+00 .2119284E+00 .1134606E+01 .1346535E+01
.1250000E+02 .OOOOOOOE±OO .5511354E+00 .1884902E+01 .2436037E+01
.1250000E+02 .2000000E+01 .2253184E+00 .1092264E+00 .3345448E±00
(Begin sampling in direction of steepest descent)
.1529728E+02 .1332956E+01 .1730154E+00 .1282010E+00 .3012164E+00
.1559457E+02 .1665911E+01 .1856333E+00 .1978254E-01 .2054158E+00
.1589185E+02 .1998867E+01 .2120951E+00 .3823201E-01 .2503271E+00
(Inflection point detected, calculate gnew and run case)
.1564833E+02 .1726119E+01 .1894446E+00 .1614928E-01 .2055939E±00
(Neighboring point, not gnew, is minimum; begin second iteration,
first-order search)
.1559457E+02 .1665911E+01 .1856333E+00 .1978254E-01 .2054158E+00
.1609457E+02 .2332581E+01 .2057809E+00 .9362358E-01 .2994045E+00
.1609457E+02 .9992410E+00 .1683696E+00 .2732370E+00 .4416067E+00
.1509457E±02 .9992410E+00 .1781558E+00 .4080012E+00 .5861570E+00
.1509457E+02 .2332581E+01 .1753285E+00 .7093015E-01 .2462587E+00
(Begin sampling in direction of steepest descent)
.1562750E+02 .1897489E+01 .1985624E+00 .2482082E-01 .2233833E+00
.1566043E+i02 .2129067E+01 .1914483E+00 .5584736E-01 .2472957E+00
.1569336E+02 .2360645E+01 .1609997E+00 .7938124E-01 .2403810E+00
(Error function not decreasing in direction of steepest descent,
perform second-order search)
.1559457E+02 .2608725E+01 .1693448E+00 .1224428E+00 .2917875E+00
.1559457E+02 .7230972E+00 .1844394E+00 .6543074E+00 .8387468E+00
.1630168E+02 .1665911E+01 .1931526E+00 .1207620E-01 .2052288E+00
.1488746E+02 .1665911E+01 .1609893E+00 .2866385E-01 .1896532E+00
(With nine-point stencil done, compute new minimum location, run
case)
.1631888E+02 .1821450E+01 .2068326E+00 .2065254E-01 .2274851E+00
(New minimum occurs on one of nine stencil points, not calculated
minimum point; begin third iteration, first-order search)
.1488746E+02 .1665911E+01 .1609893E+00 .2866385E-01 .1896532E+00
.1522079E+02 .2110351E+01 .1578574E+00 .3882423E-01 .1966816E+00
.1522079E+02 .1221471E+01 .1728989E+00 .2016489E+00 .3745477E+00
.1455413E+02 .1221471E+01 .1628607E+00 .2533742E+00 .4162349E+00
.1455413E+02 .2110351E+01 .1668066E+00 .4010521E-01 .2069118E+00
(Begin sampling in direction of steepest descent)
.1490312E+02 .1821650E+01 .1539040E+00 .1456808E-01 .1684721E+00
.1491878E+02 .1977390E+01 .1581821E+00 .1942285E-01 .1776049E+00
.1493445E+02 .2133129E+01 .1703016E+00 .3713999E-01 .2074416E+00
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(Inflection point detected, calculate g,, and run case)
.1490404E+02 .1830820E+01 .1542143E+00 .1464542E-01 .1688597E+00
(Neighboring point, not g,, is minimum; begin fourth iteration,
first-order search)
.1490312E±02 .1821650E+01 .1539040E+00 .1456808E-01 .1684721E+00
.1512534E+02 .2117950E+01 .1584942E+00 .3680250E-01 .1952967E+00
.1512534E+02 .1525350E+01 .1732771E+00 .5725219E-01 .2305293E+00
.1468090E+02 .1525350E+01 .1543828E+00 .6872501E-01 .2231078E+00
.1468090E+02 .2117950E+01 .1724890E+00 .3674111E-01 .2092301E+00
(Begin sampling in direction of steepest descent)
.1491345E+02 .1925499E+01 .1543873E+00 .1639539E-01 .1707827E+00
.1492377E+02 .2029348E+01 .1629900E+00 .2397354E-01 .1869635E+00
.1493410E+02 .2133197E+01 .1702498E+00 .3705599E-01 .2073058E+00
(Error function not decreasing in direction of steepest descent,
perform second-order search)
.1490312E+02 .2240681E+01 .1733245E+00 .5475095E-01 .2280754E+00
.1490312E+02 .1402619E+01 .1686627E+00 .1147298E+00 .2833926E+00
.1521739E+02 .1821650E+01 .1753974E+00 .1895371E-01 .1943511E+00
.1458885E+02 .1821650E+01 .1655162E+00 .1223477E-01 .1777510E+00
(With nine-point stencil done, compute new minimum location, run
case)
.1488558E+02 .1876255E+01 .1534002E+00 .1487534E-01 .1682755E+00
(New minimum occurs at calculated minimum point; begin fifth
iteration, first-order search)
.1488558E+02 .1876255E+01 .1534002E±00 .l487534E-01 .1682755E+00
.1503373E+02 .2073789E+01 .1599586E+00 .3069891E-01 .1906575E+00
.1503373E+02 .1678722E+01 .1680399E+00 .2583452E-01 .1938744E+00
.1473744E+02 .1678722E+01 .1510056E+00 .2658516E-01 .1775907E+00
.1473744E+02 .2073789E±01 .1714617E+00 .2889088E-01 .2003526E+00
(Begin sampling in direction of steepest descent)
.1486885E+02 .1810076E+01 .1532397E+00 .1491032E-01 .1681500E+00
.1485212E+02 .1743896E+01 .1551282E+00 .1854150E-01 .1736697E+00
.1483539E+02 .1677717E+01 .1571629E+00 .2695767E-01 .1841206E±00
(Inflection point detected, calculate g,,,, and run case)
.148792lE+02 .1851063E+01 .1543475E+00 .1448042E-01 .1688279E+00
(Neighboring point, not gnew,,, is minimum; stop search)
.1486885E+02 .1810076E+01 .1532397E+00 .1491032E-01 .l681500E+00
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B. 4 Tabulated Path Data for Automatic Search/Second Robustness
Test from Sect. 6.4

eattach Oexit Er Erl Ert
(Begin first-order search)
.1000000E+02 .3500000E+01 .5476815E-01 .1326148E+00 .1873830E+00
.1100000E+02 .4500000E+01 .9851435E-01 .1111902E+00 .2097045E+00O
.1100000E+02 .2500000E+01 .1234776E+00 .9904838E-1 .2225260E+00
.9000000E+01 .2500000E+01 .1190515E+00 .9903943E-01 .2180910E+00
.9000000E+01 .4500000E+01 .8838512E-01 .1120428E+00 .2004279E+00
(Begin sampling in direction of steepest descent)
.9854970E+0l .3822438E+01 .9921345E-01 .1189642E+00 .2181777E+00
.9709941E+01 .4144876E+01 .7977663E-01 .1177466E+00 .1975233E+00
.9564911E+01 .4467315E+01 .9363912E-01 .1036490E+00 .1972881E+00
(Error function not decreasing in direction of steepest descent,
perform second-order search)
.1000000E+02 .4914214E+01 .1694553E+00 .1594638E+00 .3289191E+00
.1000000E+02 .2085786E+01 .1568045E+00 .1227366E+00 .2795411tE+00
.1141421E+02 .3500000E+01 .5570490E-01 .1269973E+00 .1827022E+00
.8585786E+01 .3500000E+01 .1121790E+00 .1030882E+00 .2152671E+00
(With nine-point stencil done, compute new minimum location, run
case)
.9478762E+01 .3455976E+01 .8520553E-01 .9516259E-01 .1803681E+00
(New minimum occurs at calculated minimum point, begin second
iteration, first-order search)
.9478762E±01 .3455976E+01 .8520553E-01 .9516259E-01 .1803681E+00
.1014543E+02 .4122646E+01 .9635273E-01 .1133584E+00 .2097112E+00
.1014543E+02 .2789306E+01 .6725413E-01 .9792747E-01 .1651816E+00
.8812092E+01 .2789306E+01 .1401340E+00 .1247406E+00 .2648745E+00
.8812092E+01 .4122646E+01 .5939336E-01 .1117491E+00 .1711424E+00
(Begin sampling in direction of steepest descent)
.9662370E+01 .3603773E+01 .8559036E-01 .9771550E-01 .1833059E+00
.9845979E+01 .3751571E+01 .9233749E-01 .1087427E+00 .2010801E+00
.1002959E+02 .3899368E+01 .1073412E±00 .1126093E+00 .2199505E+00
(Error function not decreasing in direction of steepest descent,
perform second-order search)
.9478762E+01 .4398790E+01 .4761807E-01 .1309440E+00 .1785621E+00
.9478762E+01 .2513162E+01 .5294066E-01 .6948189E-01 .1224225E+00
.1042158E+02 .3455976E+01 .2966279E-01 .1328802E+00 .1625430E+00
.8535948E+01 .3455976E+01 .1147913E+00 .9866041E-01 .2134517E+00
(With nine-point stencil done, compute new minimum location, run
case)
.9517540E+01 .3749574E+01 .1074797E+00 .1162802E+00 .2237599E+00
(New minimum occurs on one of nine stencil points, not calculated
minimum point; begin third iteration, first-order search)
.9478762E+01 .2513162E+01 .5294066E-01 .6948189E-01 .1224225E+00
.9923202E+01 .2957602E+0l .3594578E-01 .9455798E-01 .1305038E+00
.9923202E+01 .2068722E+01 .1584257E+00 .1254635E+00 .2838893E+00
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.9034322E+01 .2068722E+01 .1469209E+00 .8058758E-01 .2275085E+00

.9034322E+01 .2957602E+01 .1121868E±00 .1440551E+00 .2562419E+00
(Begin sampling in direction of steepest descent)
.9555162E+01 .2650472E+01 .4454022E-01 .7150533E-01 .1160455E+00
.9631562E+01 .2787781E+01 .3931737E-01 .7935443E-01 .1186718E+00
.9707962E+01 .2925091E+01 .3540313E-01 .9149022E-01 .1268933E+00
(Inflection point detected, calculate gnew and run case)
.9557502E+01 .2654677E+01 .4437900E-01 .7215990E-01 .1l65389E+00
(Neighboring point, not gne.w, is minimum; begin fourth iteration,
first-order search)

.9555162E+01 .2650472E+01 .4454022E-01 .7150533E-01 .1160455E+00

.9851455E+01 .2946765E+01 .3535811E-01 .9140727E-01 .1267654E+00

.9851455E+01 .2354178E+01 .1008379E+00 .9185850E-01 .1926964E+00

.9258869E+01 .2354178E+01 -.7955536E-01 .6492129E-01 .1444767E+00

.9258869E+01 .2946765E+01 .7615678E-01 .1402819E+00 .2l64387E+00
(Begin sampling in direction of steepest descent)
.9658826E+01 .2635390E+01 .4724712E-01 .8154919E-01 .1287963E+00
.9762490E+01 .2620308E+01 .5680870E-01 .9303363E-01 .1498423E+00
.9866154E+01 .2605226E+01 .6760379E-01 .9211896E-01 .1597227E+00
(Error function not decreasing in direction of steepest descent,
perform second-order search)
.9555162E±01 .2929822E+01 .4306103E-01 .9608665E-01 .1391477E+00
.9555162E+01 .2371122E+01 .6928213E-01 .8853766E-1 .1578198E+00
.9834512E+01 .2650472E+01 .5897811E-01 .8847694E-01 .1474551E±00
.9275812E+01 .2650472E+01 .6464647E-01 .8534673E-01 .1499932E+00
(With nine-point stencil done, compute new minimum location, run
case)
.9650346E+01 .2738107E+01 .4089450E-01 .7930367E-01 .1201982E+00
(No new minimum, begin fifth iteration, first-order search)
.9555162E+01 .2650472E+01 .4454022E-01 .7150533E-01 .1160455E+00
.9686849E+01 .2782159E+01 .3886444E-01 .8207822E-01 .1209427E+00
.9686849E+01 .251878'5E+01 .6137357E-01 .8764148E-01 .1490151E+00
.9423475E+01 .2518785E+01 .5302783E-01 .7527530E-01 .1283031E+00
.9423475E+01 .2782159E+01 .4859376E-01 .8898575E-01 .1375795E+00
(Begin sampling in direction of steepest descent)
.9545297E+01 .2695973E+01 .4306576E-01 .7976903E-01 .1228348E+00
.9535432E+01 .2741474E+01 .4167120E-01 .8223910E-01 .1239103E+00
.9525567E+01 .2786975E+01 .4124818E-01 .8468354E-01 .1259317E+00
(Error function not decreasing in direction of steepest descent,
perform second-order search)
.9555162E+01 .2836710E+01 .4093964E-01 .8668329E-01 .1276229E+00
.9555162E+01 .2464234E+01 .5910196E-01 .7603489E-01 .1351368E+00
.9741400E+01 .2650472E+01 .5108793E-01 .8785197E-01 .1389399E+00
.9368924E+01 .2650472E+01 .5322508E-01 .8570497E-01 .1389300E+00
(With nine-point stencil done, compute new minimum location, run
case)
.9569793E+01 .2692611E+01 .4375831E-01 .7931536E-01 .1230737E+00
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(No new minimum, begin sixth iteration, first-order search)
.9555162E+01 .2650472E+01 .4454022E-01 .7150533E-01 .1160455E+00
.9655162E+01 .2750472E+01 .4079748E-01 .8150779E-01 .1223053E+00
.9655162E+01 .2550472E+01 .5526874E-01 .8527539E-01 .1405441E+00
.9455162E+01 .2550472E+01 .5046561E-01 .7197192E-01 .1224375E+00
.9455162E+01 .2750472E+01 .4578677E-01 .8939872E-01 .1351855E+00
(Begin sampling in direction of steepest descent)
.9530786E+01 .2676081E+01 .4371537E-01 .7678889E-01 .1205043E+00
.9506411E+01 .2701691E+01 .4396236E-01 .8187671E-01 .1258391E+00
.9482035E+01 .2727300E+01 .4468751E-01 .8088665E-01 .1255742E+00
(Search stopped, no new minimum found)
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